切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 390 -393. doi: 10.3877/cma.j.issn.1674-392X.2023.04.005

专家论坛

人工智能技术在疝和腹壁外科领域的应用及展望
邢晓伟, 刘雨辰, 王明刚()   
  1. 100043 首都医科大学附属北京朝阳医院疝和腹壁外科
  • 收稿日期:2023-05-04 出版日期:2023-08-18
  • 通信作者: 王明刚
  • 基金资助:
    北京市自然科学基金面上项目(7222071)

Application and prospects of artificial intelligence technology in the field of hernia and abdominal wall surgery

Xiaowei Xing, Yuchen Liu, Minggang Wang()   

  1. Department of Hernia and Abdominal Wall Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100043, China
  • Received:2023-05-04 Published:2023-08-18
  • Corresponding author: Minggang Wang
引用本文:

邢晓伟, 刘雨辰, 王明刚. 人工智能技术在疝和腹壁外科领域的应用及展望[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 390-393.

Xiaowei Xing, Yuchen Liu, Minggang Wang. Application and prospects of artificial intelligence technology in the field of hernia and abdominal wall surgery[J/OL]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2023, 17(04): 390-393.

随着人工技能技术不断取得突破,深度学习、生成式人工智能等技术逐渐应用于医学各个专业。近些年,疝和腹壁外科专业相关研究数量不断增长。人工智能技术在疝和腹壁外科领域的应用,将推动本专业进入个体化、智能化治疗的新时代。本文将介绍人工智能技术的基本原理及其在疝和腹壁外科中取得的研究进展,探讨其应用局限及未来可能的发展方向。

With the continuous breakthroughs in artificial intelligence (AI) technology, various techniques such as deep learning and AI generated content are gradually being applied to various medical fields. In recent years, the number of studies related to hernias and abdominal wall surgery has continued to increase. The application of AI technology in the field of hernia and abdominal wall surgery is expected to drive this profession towards a new era of personalized and intelligent treatment. This article will introduce the basic principles of AI technology and its research progress in the field of hernia and abdominal wall surgery, explore its potential application limitations, and discuss future directions of development.

[1]
Skovgaards DM, Diab HMH, Midtgaard HG, et al. Causes of prolonged hospitalization after open incisional hernia repair: an observational single-center retrospective study of a prospective database[J]. Hernia, 2021, 25(4): 1027-1034.
[2]
Pechman DM, Cao L, Fong C, et al. Laparoscopic versus open emergent ventral hernia repair: utilization and outcomes analysis using the ACSNSQIP database[J]. Surg Endosc, 2018, 32(12): 4999-5005.
[3]
Drissi F, Jurczak F, Cossa J P, et al. Outpatient groin hernia repair: assessment of 9330 patients from the French "Club Hernie" database[J]. Hernia, 2018, 22(3): 427-435.
[4]
Rimmer L, Howard C, Picca L, et al. The automaton as a surgeon: the future of artificial intelligence in emergency and general surgery[J]. Eur J Trauma Emerg Surg, 2021, 47(3): 757-762.
[5]
Zhou XY, Guo Y, Shen M, et al. Application of artificial intelligence in surgery[J]. Front Med, 2020, 14(4): 417-430.
[6]
Le Berre C, Sandborn WJ, Aridhi S, et al. Application of Artificial Intelligence to Gastroenterology and Hepatology[J]. Gastroenterology, 2020, 158(1): 76-94 e2.
[7]
Kilic A, Goyal A, Miller J K, et al. Predictive Utility of a Machine Learning Algorithm in Estimating Mortality Risk in Cardiac Surgery[J]. Ann Thorac Surg, 2020, 109(6): 1811-1819.
[8]
Seymour CW, Kennedy JN, Wang S, et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis[J]. JAMA, 2019, 321(20): 2003-2017.
[9]
Loftus TJ, Tighe PJ, Filiberto AC, et al. Artificial Intelligence and Surgical Decision-making[J]. JAMA Surg, 2020, 155(2): 148-158.
[10]
Wu J, Chen J, Cai J. Application of Artificial Intelligence in Gastrointestinal Endoscopy[J]. J Clin Gastroenterol, 2021, 55(2): 110-120.
[11]
Loftus TJ, Brakenridge SC, Croft CA, et al. Neural network prediction of severe lower intestinal bleeding and the need for surgical intervention[J]. J Surg Res, 2017, 212: 42-47.
[12]
Singh PP, Zeng IS, Srinivasa S, et al. Systematic review and meta-analysis of use of serum C-reactive protein levels to predict anastomotic leak after colorectal surgery[J]. Br J Surg, 2014, 101(4): 339-346.
[13]
Pepys MB, Hirschfield GM, Tennent GA, et al. Targeting C-reactive protein for the treatment of cardiovascular disease[J]. Nature, 2006, 440(7088): 1217-1221.
[14]
Schwartz WB. Medicine and the computer. The promise and problems of change[J]. N Engl J Med, 1970, 283(23): 1257-1264.
[15]
Shung DL, Au B, Taylor RA, et al. Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding[J]. Gastroenterology, 2020, 158(1): 160-167.
[16]
Que SJ, Chen QY, Qing Z, et al. Application of preoperative artificial neural network based on blood biomarkers and clinicopathological parameters for predicting long-term survival of patients with gastric cancer[J]. World J Gastroenterol, 2019, 25(43): 6451-6464.
[17]
Gao J, Zagadailov P, Merchant AM. The Use of Artificial Neural Network to Predict Surgical Outcomes After Inguinal Hernia Repair[J]. J Surg Res, 2021, 259: 372-378.
[18]
Garrow CR, Kowalewski KF, Li L, et al. Machine Learning for Surgical Phase Recognition: A Systematic Review[J]. Ann Surg, 2021, 273(4): 684-693.
[19]
Madani A, Namazi B, Altieri MS, et al. Artificial Intelligence for Intraoperative Guidance: Using Semantic Segmentation to Identify Surgical Anatomy During Laparoscopic Cholecystectomy[J]. Ann Surg, 276(2): 363-369.
[20]
Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial Intelligence for Surgical Safety: Automatic Assessment of the Critical View of Safety in Laparoscopic Cholecystectomy Using Deep Learning[J]. Ann Surg, 2022, 275(5): 955-961.
[21]
Harangi B, Hajdu A, Lampe R, et al. Recognizing ureter and uterine artery in endoscopic images using a convolutional neural network[C]. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems(CBMS), 2017, 726-727.
[22]
Grasa OG, BernaL E, Casado S. Visual SLAM for handheld monocular endoscope[J]. IEEE Trans Med Imaging, 2014, 33(1): 135-146.
[23]
Kitaguchi D, Takeshita N, Matsuzaki H, et al. Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach[J]. Surg Endosc, 2020, 34(11): 4924-4931.
[24]
Guédon ACP, Meij SEP, Osman KNMMH, et al. Deep learning for surgical phase recognition using endoscopic videos[J]. Surg Endosc, 2021, 35(11): 6150-6157.
[25]
Escobar Dominguez JE, Gonzalez A, Donkor C. Robotic inguinal hernia repair[J]. J Surg Oncol, 2015, 112(3): 310-314.
[26]
Prabhu AS, Carbonell A, Hope W, et al. Robotic Inguinal vs Transabdominal Laparoscopic Inguinal Hernia Repair: The RIVAL Randomized Clinical Trial[J]. JAMA Surg, 2020, 155(5): 380-387.
[27]
Olavarria OA, Bernardi K, Shah SK, et al. Robotic versus laparoscopic ventral hernia repair: multicenter, blinded randomized controlled trial[J]. BMJ, 2020, 370: m2457.
[28]
Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery[J]. Sci Transl Med, 2016, 8(337): 337ra64.
[29]
Hong N, Kim M, Lee C, et al. Head-mounted interface for intuitive vision control and continuous surgical operation in a surgical robot system[J]. Med Biol Eng Comput, 2019, 57(3): 601-614.
[30]
Begum S, Khan MR. Outcome assessment of primary ventral versus incisional hernia repair by laparoscopic approach[J]. Int J Abdom Wall Hernia Surg, 2018, 1: 94-98.
[31]
Nudel J, Bishara AM, De Geus SWL, et al. Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery: an analysis of the MBSAQIP database[J]. Surg Endosc, 2021, 35(1): 182-191.
[32]
O'brien WJ, Ramos RD, Gupta K, et al. Neural Network Model to Detect Long-Term Skin and Soft Tissue Infection after Hernia Repair[J]. Surg Infect(Larchmt), 2021, 22(7): 668-674.
[33]
Elhage SA, Deerenberg EB, Ayuso SA, et al. Development and Validation of Image-Based Deep Learning Models to Predict Surgical Complexity and Complications in Abdominal Wall Reconstruction[J]. JAMA Surg, 2021, 156(10): 933-940.
[34]
Hassan AM, Lu SC, Asaad M, et al. Novel Machine Learning Approach for the Prediction of Hernia Recurrence, Surgical Complication, and 30-Day Readmission after Abdominal Wall Reconstruction[J]. J Am Coll Surg, 2022, 234(5): 918-927.
[35]
Tang Z, Yang Z, Zhu C, et al. Any-to-Any Generation via Composable Diffusion[J/OL]. arXiv: 2305. 11846, 2023.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[3] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[4] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[5] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[6] 马东扬, 李斌, 陆安清, 王光华, 雷文章, 宋应寒. Gilbert 与单层补片腹膜前疝修补术疗效的随机对照研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 629-633.
[7] 王浩源, 汪海洋, 孙建明, 陈以宽, 祁小桐, 唐博. 腹腔镜与开放修补对肝硬化腹外疝患者肝功能及凝血的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 654-659.
[8] 周正阳, 陈凯, 仇多良, 邵乐宁, 吴浩荣, 钟丰云. 腹腔镜腹股沟疝修补术后出血原因分析及处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 660-664.
[9] 顾熙, 徐子宇, 周澍, 张吴楼, 张业鹏, 林昊, 刘宗航, 嵇振岭, 郑立锋. 腹股沟疝腹膜前间隙无张力修补术后补片感染10 例报道[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 665-669.
[10] 宋俊锋, 张珍珍. 单侧初发性腹股沟斜疝老年患者经腹腹膜前疝修补术中残余疝囊腹直肌下缘固定效果评估[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 670-674.
[11] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[12] 于新峰, 曾琦, 后强, 徐浩, 操谢芳. 腹腔镜经腹腹膜前疝修补术和腹腔镜完全腹膜外疝修补术对成人腹股沟疝治疗效果及预后分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 681-686.
[13] 朱佳琳, 方向, 贵诗雨, 黄丹, 周小雨, 郭文恺. 大鼠切口疝腹膜前间隙补片修补术后血清中VEGF 和Ang-1 的表达情况[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 703-707.
[14] 杨媛媛, 林贤超, 林荣贵, 陆逢春, 黄鹤光. 肌后/腹膜前补片修补巨大切口疝术后并发症防治[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 645-648.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?