切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 390 -393. doi: 10.3877/cma.j.issn.1674-392X.2023.04.005

专家论坛

人工智能技术在疝和腹壁外科领域的应用及展望
邢晓伟, 刘雨辰, 王明刚()   
  1. 100043 首都医科大学附属北京朝阳医院疝和腹壁外科
  • 收稿日期:2023-05-04 出版日期:2023-08-18
  • 通信作者: 王明刚
  • 基金资助:
    北京市自然科学基金面上项目(7222071)

Application and prospects of artificial intelligence technology in the field of hernia and abdominal wall surgery

Xiaowei Xing, Yuchen Liu, Minggang Wang()   

  1. Department of Hernia and Abdominal Wall Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100043, China
  • Received:2023-05-04 Published:2023-08-18
  • Corresponding author: Minggang Wang
引用本文:

邢晓伟, 刘雨辰, 王明刚. 人工智能技术在疝和腹壁外科领域的应用及展望[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 390-393.

Xiaowei Xing, Yuchen Liu, Minggang Wang. Application and prospects of artificial intelligence technology in the field of hernia and abdominal wall surgery[J]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2023, 17(04): 390-393.

随着人工技能技术不断取得突破,深度学习、生成式人工智能等技术逐渐应用于医学各个专业。近些年,疝和腹壁外科专业相关研究数量不断增长。人工智能技术在疝和腹壁外科领域的应用,将推动本专业进入个体化、智能化治疗的新时代。本文将介绍人工智能技术的基本原理及其在疝和腹壁外科中取得的研究进展,探讨其应用局限及未来可能的发展方向。

With the continuous breakthroughs in artificial intelligence (AI) technology, various techniques such as deep learning and AI generated content are gradually being applied to various medical fields. In recent years, the number of studies related to hernias and abdominal wall surgery has continued to increase. The application of AI technology in the field of hernia and abdominal wall surgery is expected to drive this profession towards a new era of personalized and intelligent treatment. This article will introduce the basic principles of AI technology and its research progress in the field of hernia and abdominal wall surgery, explore its potential application limitations, and discuss future directions of development.

[1]
Skovgaards DM, Diab HMH, Midtgaard HG, et al. Causes of prolonged hospitalization after open incisional hernia repair: an observational single-center retrospective study of a prospective database[J]. Hernia, 2021, 25(4): 1027-1034.
[2]
Pechman DM, Cao L, Fong C, et al. Laparoscopic versus open emergent ventral hernia repair: utilization and outcomes analysis using the ACSNSQIP database[J]. Surg Endosc, 2018, 32(12): 4999-5005.
[3]
Drissi F, Jurczak F, Cossa J P, et al. Outpatient groin hernia repair: assessment of 9330 patients from the French "Club Hernie" database[J]. Hernia, 2018, 22(3): 427-435.
[4]
Rimmer L, Howard C, Picca L, et al. The automaton as a surgeon: the future of artificial intelligence in emergency and general surgery[J]. Eur J Trauma Emerg Surg, 2021, 47(3): 757-762.
[5]
Zhou XY, Guo Y, Shen M, et al. Application of artificial intelligence in surgery[J]. Front Med, 2020, 14(4): 417-430.
[6]
Le Berre C, Sandborn WJ, Aridhi S, et al. Application of Artificial Intelligence to Gastroenterology and Hepatology[J]. Gastroenterology, 2020, 158(1): 76-94 e2.
[7]
Kilic A, Goyal A, Miller J K, et al. Predictive Utility of a Machine Learning Algorithm in Estimating Mortality Risk in Cardiac Surgery[J]. Ann Thorac Surg, 2020, 109(6): 1811-1819.
[8]
Seymour CW, Kennedy JN, Wang S, et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis[J]. JAMA, 2019, 321(20): 2003-2017.
[9]
Loftus TJ, Tighe PJ, Filiberto AC, et al. Artificial Intelligence and Surgical Decision-making[J]. JAMA Surg, 2020, 155(2): 148-158.
[10]
Wu J, Chen J, Cai J. Application of Artificial Intelligence in Gastrointestinal Endoscopy[J]. J Clin Gastroenterol, 2021, 55(2): 110-120.
[11]
Loftus TJ, Brakenridge SC, Croft CA, et al. Neural network prediction of severe lower intestinal bleeding and the need for surgical intervention[J]. J Surg Res, 2017, 212: 42-47.
[12]
Singh PP, Zeng IS, Srinivasa S, et al. Systematic review and meta-analysis of use of serum C-reactive protein levels to predict anastomotic leak after colorectal surgery[J]. Br J Surg, 2014, 101(4): 339-346.
[13]
Pepys MB, Hirschfield GM, Tennent GA, et al. Targeting C-reactive protein for the treatment of cardiovascular disease[J]. Nature, 2006, 440(7088): 1217-1221.
[14]
Schwartz WB. Medicine and the computer. The promise and problems of change[J]. N Engl J Med, 1970, 283(23): 1257-1264.
[15]
Shung DL, Au B, Taylor RA, et al. Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding[J]. Gastroenterology, 2020, 158(1): 160-167.
[16]
Que SJ, Chen QY, Qing Z, et al. Application of preoperative artificial neural network based on blood biomarkers and clinicopathological parameters for predicting long-term survival of patients with gastric cancer[J]. World J Gastroenterol, 2019, 25(43): 6451-6464.
[17]
Gao J, Zagadailov P, Merchant AM. The Use of Artificial Neural Network to Predict Surgical Outcomes After Inguinal Hernia Repair[J]. J Surg Res, 2021, 259: 372-378.
[18]
Garrow CR, Kowalewski KF, Li L, et al. Machine Learning for Surgical Phase Recognition: A Systematic Review[J]. Ann Surg, 2021, 273(4): 684-693.
[19]
Madani A, Namazi B, Altieri MS, et al. Artificial Intelligence for Intraoperative Guidance: Using Semantic Segmentation to Identify Surgical Anatomy During Laparoscopic Cholecystectomy[J]. Ann Surg, 276(2): 363-369.
[20]
Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial Intelligence for Surgical Safety: Automatic Assessment of the Critical View of Safety in Laparoscopic Cholecystectomy Using Deep Learning[J]. Ann Surg, 2022, 275(5): 955-961.
[21]
Harangi B, Hajdu A, Lampe R, et al. Recognizing ureter and uterine artery in endoscopic images using a convolutional neural network[C]. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems(CBMS), 2017, 726-727.
[22]
Grasa OG, BernaL E, Casado S. Visual SLAM for handheld monocular endoscope[J]. IEEE Trans Med Imaging, 2014, 33(1): 135-146.
[23]
Kitaguchi D, Takeshita N, Matsuzaki H, et al. Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach[J]. Surg Endosc, 2020, 34(11): 4924-4931.
[24]
Guédon ACP, Meij SEP, Osman KNMMH, et al. Deep learning for surgical phase recognition using endoscopic videos[J]. Surg Endosc, 2021, 35(11): 6150-6157.
[25]
Escobar Dominguez JE, Gonzalez A, Donkor C. Robotic inguinal hernia repair[J]. J Surg Oncol, 2015, 112(3): 310-314.
[26]
Prabhu AS, Carbonell A, Hope W, et al. Robotic Inguinal vs Transabdominal Laparoscopic Inguinal Hernia Repair: The RIVAL Randomized Clinical Trial[J]. JAMA Surg, 2020, 155(5): 380-387.
[27]
Olavarria OA, Bernardi K, Shah SK, et al. Robotic versus laparoscopic ventral hernia repair: multicenter, blinded randomized controlled trial[J]. BMJ, 2020, 370: m2457.
[28]
Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery[J]. Sci Transl Med, 2016, 8(337): 337ra64.
[29]
Hong N, Kim M, Lee C, et al. Head-mounted interface for intuitive vision control and continuous surgical operation in a surgical robot system[J]. Med Biol Eng Comput, 2019, 57(3): 601-614.
[30]
Begum S, Khan MR. Outcome assessment of primary ventral versus incisional hernia repair by laparoscopic approach[J]. Int J Abdom Wall Hernia Surg, 2018, 1: 94-98.
[31]
Nudel J, Bishara AM, De Geus SWL, et al. Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery: an analysis of the MBSAQIP database[J]. Surg Endosc, 2021, 35(1): 182-191.
[32]
O'brien WJ, Ramos RD, Gupta K, et al. Neural Network Model to Detect Long-Term Skin and Soft Tissue Infection after Hernia Repair[J]. Surg Infect(Larchmt), 2021, 22(7): 668-674.
[33]
Elhage SA, Deerenberg EB, Ayuso SA, et al. Development and Validation of Image-Based Deep Learning Models to Predict Surgical Complexity and Complications in Abdominal Wall Reconstruction[J]. JAMA Surg, 2021, 156(10): 933-940.
[34]
Hassan AM, Lu SC, Asaad M, et al. Novel Machine Learning Approach for the Prediction of Hernia Recurrence, Surgical Complication, and 30-Day Readmission after Abdominal Wall Reconstruction[J]. J Am Coll Surg, 2022, 234(5): 918-927.
[35]
Tang Z, Yang Z, Zhu C, et al. Any-to-Any Generation via Composable Diffusion[J/OL]. arXiv: 2305. 11846, 2023.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 孟飞龙, 华帅, 张莹, 路广海. 经脐单孔腹腔镜后鞘后入路在全腹膜外腹股沟疝修补术中的应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 658-660.
[4] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[5] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[6] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[7] 袁伟, 张修稳, 潘宏波, 章军, 王虎, 黄敏. 平片式与填充式腹股沟疝修补术的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 697-701.
[8] 夏松, 姚嗣会, 汪勇刚. 经腹腹膜前与疝环充填式疝修补术治疗腹股沟疝的对照研究[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 702-705.
[9] 刘跃刚, 薛振峰. 腹腔镜腹股沟疝日间手术在老年患者中的安全性分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 711-714.
[10] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[11] 于智慧, 赵建军. 后路腰方肌阻滞复合全身麻醉在腹股沟斜疝经腹腹膜前手术中的应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 734-739.
[12] 田静, 方秀春. 超声引导下横筋膜平面阻滞在儿童腹股沟疝手术的应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 740-744.
[13] 王红艳, 马艳丽, 郑洁灿. 手术室综合护理在腹股沟疝手术中的应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 755-758.
[14] 王敏, 蒋家斌, 李茂新. 预警宣教联合个性化疼痛管理对腹股沟疝手术患者的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 764-767.
[15] 朱青青, 卫贞祺. 腹股沟疝患者围手术期自我能效管理探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 773-777.
阅读次数
全文


摘要