切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (06) : 677 -681. doi: 10.3877/cma.j.issn.1674-392X.2023.06.004

复杂腹壁疝

基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值
邢晓伟, 刘雨辰, 赵冰, 王明刚()   
  1. 100043 首都医科大学附属北京朝阳医院疝和腹壁外科
    100085 北京,浪潮电子信息产业股份有限公司
  • 收稿日期:2023-10-15 出版日期:2023-12-18
  • 通信作者: 王明刚
  • 基金资助:
    北京市自然科学基金面上项目(7222071)

A research on predictive value of convolutional neural network based on preoperative abdominal CT for recurrence of incisional hernia after surgical repair

Xiaowei Xing, Yuchen Liu, Bing Zhao, Minggang Wang()   

  1. Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medial University, Beijing 100043, China
    Inspur Electronic Information Industry Co.Ltd, Beijing 100085, China
  • Received:2023-10-15 Published:2023-12-18
  • Corresponding author: Minggang Wang
引用本文:

邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.

Xiaowei Xing, Yuchen Liu, Bing Zhao, Minggang Wang. A research on predictive value of convolutional neural network based on preoperative abdominal CT for recurrence of incisional hernia after surgical repair[J/OL]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2023, 17(06): 677-681.

目的

基于术前腹部CT图像构建腹壁切口疝术后复发预测模型,以辅助疝外科医生制定个体化治疗方案。

方法

收集2016—2019年在首都医科大学附属北京朝阳医院就诊的528例腹壁切口疝患者资料,将患者术前腹部CT图像进行标准化处理后共获得44380张图像。按4∶1的比例随机分为训练集及验证集,用以构建和验证预测切口疝复发的卷积神经网络(CNN)模型。通过灵敏度、特异度、受试者工作特征曲线及曲线下面积(AUC)等指标验证模型性能。

结果

528例接受切口疝修补手术的患者中有73例出现复发,复发率为13.8%。本研究成功建立了切口疝术后复发预测的CNN模型,验证结果显示AUC值为0.840,灵敏度85.2%,特异度68.1%。

结论

基于术前腹部CT图像构建的CNN模型对切口疝患者术后复发具有较好的预测能力,对疝外科医生制定个体化治疗方案具有一定辅助作用。

Objective

To construct a predictive model for the postoperative recurrence of incisional hernia based on preoperative abdominal CT images, with the aim of assisting hernia surgeons in formulating individualized treatment plans.

Methods

A cohort of 528 patients with incisional hernia who were treated at Beijing Chaoyang Hospital between 2016 and 2019, was assembled. Preoperative abdominal CT images underwent standardization, yielding 44,380 images. These images were randomly divided into training and validation sets in a 4∶1 ratio to train and validate a convolutional neural network (CNN) model for predicting incisional hernia recurrence. Model performance was evaluated utilizing indicators including sensitivity, specificity, receiver operating characteristic (ROC) curve, and area under the curve (AUC).

Results

Among the 528 patients who underwent incisional hernia repair, 73 experienced recurrence, resulting in a recurrence rate of 13.8%. The study successfully established a CNN model for predicting postoperative recurrence of incisional hernia, with a validated AUC value of 0.840, sensitivity of 85.2%, and specificity of 68.1%.

Conclusion

The CNN model constructed based on preoperative abdominal CT images has a good ability to predict postoperative recurrence in patients with incisional hernia and has a certain role for hernia surgeons in developing individualized treatment plan.

图1 切口疝患者术前腹部CT图像
图2 切口疝患者腹部CT图像数据增强注:2A初始图像;2B对初始图像进行随机裁剪;2C对2B图像进行随机翻转。
图3 卷积神经网络模型的可视化解释注:3A列为腹部CT原图;3B列为模型输出热力图覆盖于腹部CT原图后的效果图。该结果仅作为理解模型的一种直观方式,并不一定与真实的医学分析相同。
表1 切口疝复发与未复发患者一般资料比较[例(%)]
图4 模型训练loss曲线
图5 模型预测结果的受试者工作特征曲线
[1]
Besancenot A, Salomon Du Mont L, Lejay A, et al. Risk Factors of Long-Term Incisional Hernia after Open Surgery for Abdominal Aortic Aneurysm: A Bicentric Study[J]. Ann Vasc Surg, 2022, 83: 62-69.
[2]
Manoharan S, Liu G, Crump RT, et al. Incisional hernia repair surgery improves patient reported outcomes[J]. Am J Surg, 2020, 219(5): 874-878.
[3]
Tanaka H, Kitazawa M, Miyagawa Y, et al. Risk factors for umbilical incisional hernia after laparoscopic colorectal surgery[J]. ANZ J Surg, 2022, 92(12): 3219-3223.
[4]
Bueno-Lledo J, Bonafe-Diana S, Carbonell-Tatay F, et al. Component separation and large incisional hernia: predictive factors of recurrence[J]. Hernia, 2021, 25(6): 1593-1600.
[5]
Sekiya M, Sakaino S, Toshiaki T. Linear Logistic Regression for Estimation of Lower Limb Muscle Activations[J]. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(3): 523-532.
[6]
Yuan H, Gao Z, He X, et al. Application of logistic regression and convolutional neural network in prediction and diagnosis of high-risk populations of lung cancer[J]. Eur J Cancer Prev, 2022, 31(2): 145-151.
[7]
Lin Y, Hu J, Xu R, et al. Application of Logistic Regression and Artificial Intelligence in the Risk Prediction of Acute Aortic Dissection Rupture[J]. J Clin Med, 2022, 12(1): 179.
[8]
De Almeida MA, Pimenta T, Barbosa E. Incarcerated Incisional Hernia Causing Gastric Outlet Obstruction[J]. J Gastrointest Surg, 2022, 26(9): 2010-2011.
[9]
Rhemtulla IA, Hsu JY, Broach RB, et al. The incisional hernia epidemic: evaluation of outcomes, recurrence, and expenses using the healthcare cost and utilization project(HCUP) datasets[J]. Hernia, 2021, 25(6): 1667-1675.
[10]
Acar T, Acar N, Sur Y, et al. The Effects of Operation Technique on Recurrence of Incisional Hernia Repair[J]. Sisli Etfal Hastan Tip Bul, 2020, 54(1): 23-28.
[11]
Cheema F, Andacoglu O, Huang L C, et al. Risk Factors for Surgical Site Occurrence or Infection and Recurrence After Incisional Hernia Repair in Abdominal Transplant Population[J]. Transplant Proc, 2021, 53(2): 762-767.
[12]
Gignoux B, Bayon Y, Martin D, et al. Incidence and risk factors for incisional hernia and recurrence: Retrospective analysis of the French national database[J]. Colorectal Dis, 2021, 23(6): 1515-1523.
[13]
Lomanto D, Iyer S G, Shabbir A, et al. Laparoscopic versus open ventral hernia mesh repair: a prospective study[J]. Surg Endosc, 2006, 20(7): 1030-1035.
[14]
Timmermans L, De Goede B, Van Dijk SM, et al. Meta-analysis of sublay versus onlay mesh repair in incisional hernia surgery[J]. Am J Surg, 2014, 207(6): 980-988.
[15]
Helgstrand F, Rosenberg J, Kehlet H, et al. Nationwide prospective study of outcomes after elective incisional hernia repair[J]. J Am Coll Surg, 2013, 216(2): 217-228.
[16]
Parker SG, Mallett S, Quinn L, et al. Identifying predictors of ventral hernia recurrence: systematic review and meta-analysis[J]. BJS Open, 2021, 5(2): zraa071.
[17]
Van Silfhout L, Leenders L AM, Heisterkamp J, et al. Recurrent incisional hernia repair: surgical outcomes in correlation with body-mass index[J]. Hernia, 2021, 25(1): 77-83.
[18]
Higuchi N, Hiraga H, Sasaki Y, et al. Automated evaluation of colon capsule endoscopic severity of ulcerative colitis using ResNet 50[J]. PLoS One, 2022, 17(6): e0269728.
[19]
Hossain MB, Iqbal S, Islam MM, et al. Transfer learning with fine-tuned deep CNN ResNet 50 model for classifying COVID-19 from chest X-ray images[J]. Inform Med Unlocked, 2022, 30: 100916.
[20]
Panthakkan A, Anzar SM, Jamal S, et al. Concatenated Xception-ResNet50-A novel hybrid approach for accurate skin cancer prediction[J]. Comput Biol Med, 2022, 150: 106170.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[4] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[5] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[6] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[7] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[8] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[9] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[10] 林凯, 潘勇, 赵高平, 杨春. 造口还纳术后切口疝的危险因素分析与预防策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 634-638.
[11] 朱佳琳, 方向, 贵诗雨, 黄丹, 周小雨, 郭文恺. 大鼠切口疝腹膜前间隙补片修补术后血清中VEGF 和Ang-1 的表达情况[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 703-707.
[12] 陈樽, 王平, 金华, 周美玲, 李青青, 黄永刚. 肌肉减少症预测结直肠癌术后切口疝发生的应用研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 639-644.
[13] 杨媛媛, 林贤超, 林荣贵, 陆逢春, 黄鹤光. 肌后/腹膜前补片修补巨大切口疝术后并发症防治[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 645-648.
[14] 犹成亿, 尤恒, 叶东樊, 张雯, 刘禹, 王仁宇, 苏琳茜, 甘慧, 徐智. 基于3D Res U-Net-Faster RCNN 技术和CT 影像学特征的肺结节性质预测模型的建立[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 673-679.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?