切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 614 -622. doi: 10.3877/cma.j.issn.1674-392X.2025.06.003

述评

疝与腹壁外科补片研发国外进展
嵇振岭()   
  1. 210044 南京江北医院普外科,扬州大学医学院临床学院
  • 收稿日期:2025-12-09 出版日期:2025-12-18
  • 通信作者: 嵇振岭

Advances in the international development of surgical meshes for hernia and abdominal wall surgery

Zhenling Ji()   

  1. Department of General Surgery, Nanjing Jiangbei Hospital, Yangzhou University College of Clinical Medicine, Nanjing 210044, China
  • Received:2025-12-09 Published:2025-12-18
  • Corresponding author: Zhenling Ji
引用本文:

嵇振岭. 疝与腹壁外科补片研发国外进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(06): 614-622.

Zhenling Ji. Advances in the international development of surgical meshes for hernia and abdominal wall surgery[J/OL]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2025, 19(06): 614-622.

本文简要介绍了目前国外用于临床的各种补片。阐述了补片制备的新兴技术,包括复合材料、抗菌涂层、纳米修饰、再生与生物材料、3D打印和人工智能设计等,这些创新技术重新定义了疝外科的未来。未来补片研发的解决方案可能主要在轻质材料开发、表面改性材料、智能工程材料、网片人工智能设计等方面。通过对国外疝与腹壁外科补片的研发进展总结和认识,旨在为我国在该领域的进一步研究提供参考。

This article provides a concise overview of the surgical meshes currently used in clinical practice abroad. It summarizes emerging technologies for mesh fabrication, including composite materials, antibacterial coatings, nanomodification, regenerative and biological materials, three-dimensional (3D) printing, and artificial intelligence–assisted design. These innovative technologies are redefining the future of hernia surgery. Potential future directions in mesh research and development are expected to focus primarily on the development of lightweight materials, surface-modified materials, intelligent engineered materials, and artificial intelligence–based mesh design. By reviewing and analyzing recent international advances in the research and development of meshes for hernia and abdominal wall surgery, this article aims to provide a reference for further research in this field in China.

[1]
Saiding Q, Chen Y, Wang J, et al. Abdominal wall hernia repair: from prosthetic meshes to smart materials[J]. Mater Today Bio, 2023, 29(21): 100691.
[2]
Bringman S, Conze J, Cuccurullo D, et al. Hernia repair: the search for ideal meshes[J]. Hernia, 2010, 14(1): 81-87.
[3]
Pérez-Köhler B, Benito-Martínez S, Gómez-Gil V, et al. New Insights into the Application of 3D-Printing Technology in Hernia Repair[J]. Materials(Basel), 2021, 14(22): 7092.
[4]
Smart NJ, Marshall M, Daniels IR. Biological meshes: a review of their use in abdominal wall hernia repairs[J]. Surgeon, 2012, 10(3): 159-171.
[5]
Falagas ME, Kasiakou SK. Mesh-related infections after hernia repair surgery[J]. Clin Microbiol Infect, 2005, 11(1): 3-8.
[6]
Sawyer M, Ferzoco S, DeNoto G 3rd. A Polymer-Biologic Hybrid Hernia Construct: Review of Data and Early Experiences[J]. Polymers(Basel), 2021, 13(12): 1928.
[7]
Rastegarpour A, Cheung M, Vardhan M, et al. Surgical mesh for ventral incisional hernia repairs: Understanding mesh design[J]. Plast Surg(Oakv), 2016, 24(1): 41-50.
[8]
Lussier G, Evans AJ, Houston I, et al. Compact Arterial Monitoring Device Use in Resuscitative Endovascular Balloon Occlusion of the Aorta(REBOA): A Simple Validation Study in Swine[J]. Cureus, 2024, 16(10): e70789.
[9]
De Tayrac R, Oliva-Lauraire MC, Guiraud I, et al. Longlasting bioresorbable poly(lactic acid)(PLA94) mesh: a new approach for soft tissue reinforcement based on an experimental pilot study[J]. Int Urogynecol J Pelvic Floor Dysfunct, 2007, 18(9): 1007-1014.
[10]
Buell JF, Sigmon D, Ducoin CS, et al. Initial Experience with Biologic Polymer Scaffold(Poly-4-hydroxybuturate) in Complex Abdominal Wall Reconstruction[J]. Ann Surg, 2017, 266(1): 185-188.
[11]
Huang K, Ding X, Lv B, et al. Reconstruction of large-size abdominal wall defect using biodegradable poly-p-dioxanone mesh: an experimental canine study[J]. World J Surg Oncol, 2014, 12: 57.
[12]
Priego Jiménez P, Salvador Sanchís JL, Angel V, et al. Short-term results for laparoscopic repair of large paraesophageal hiatal hernias with Gore Bio A® mesh[J]. Int J Surg, 2014, 12(8): 794-797.
[13]
Chiu YL, Lin YN, Chen YJ, et al. Efficacy of Supercritical Fluid Decellularized Porcine Acellular Dermal Matrix in the Post-Repair of Full-Thickness Abdominal Wall Defects in the Rabbit Hernia Model[J]. Processes, 2022, 10(12): 2588.
[14]
Garvey PB, Giordano SA, Baumann DP, et al. Long-Term Outcomes after Abdominal Wall Reconstruction with Acellular Dermal Matrix[J]. J Am Coll Surg, 2017, 224(3): 341-350.
[15]
Bellows CF, Alder A, Helton WS. Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities [J]. Expert Rev Med Devices, 2006, 3(5): 657-675.
[16]
Köckerling F, Alam NN, Antoniou SA, et al. What is the evidence for the use of biologic or biosynthetic meshes in abdominal wall reconstruction?[J]. Hernia, 2018, 22(2): 249-269.
[17]
Rodríguez M, Gómez-Gil V, Pérez-Köhler B, et al. Polymer Hernia Repair Materials: Adapting to Patient Needs and Surgical Techniques[J]. Materials(Basel), 2021, 14(11): 2790.
[18]
Costa A, Adamo S, Gossetti F, et al. Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application?[J]. Materials (Basel), 2019, 12(15): 2375.
[19]
Najm A, Niculescu AG, Gaspar BS, et al. A Review of Abdominal Meshes for Hernia Repair-Current Status and Emerging Solutions[J]. Materials(Basel), 2023, 16(22): 7124.
[20]
Winsnes A, Haapamäki MM, Gunnarsson U, et al. Surgical outcome of mesh and suture repair in primary umbilical hernia: postoperative complications and recurrence[J]. Hernia, 2016, 20(4): 509-516.
[21]
仝聪, 李泽雨, 阎立昆. 补片相关并发症:中国疝外科亟待重视的临床挑战[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(3): 253-257.
[22]
Sanders DL, Kingsnorth AN. Prosthetic mesh materials used in hernia surgery[J]. Expert Rev Med Devices, 2012, 9(2): 159-179.
[23]
Klinge U, Park JK, Klosterhalfen B. The Ideal Mesh?[J]. Pathobiology, 2013, 80(4): 169-175.
[24]
陈静宇, 洪阁, 郭宁, 等. 疝修复补片:材料设计与应用的最新进展[J]. 中国组织工程研究, 2025, 29(16): 3494-3502.
[25]
Kalaba S, Gerhard E, Winder JS, et al. Design Strategies and Applications of Biomaterials and Devices for Hernia Repair[J]. Bioact Mater, 2016, 1(1): 2-17.
[26]
Sanbhal N, Miao L, Xu R, et al. Physical structure and mechanical properties of knitted hernia mesh materials: a review[J]. J Ind Text, 2018, 48(1): 333-360.
[27]
Papadimitriou J, Petros P. Histological studies of monofilament and multifilament polypropylene mesh implants demonstrate equivalent penetration of macrophages between fibrils[J]. Hernia, 2005, 9(1): 75-78.
[28]
Engelsman AF, van der Mei HC, Busscher HJ, et al. Morphological aspects of surgical meshes as a risk factor for bacterial colonization [J]. Br J Surg, 2008, 95(8): 1051-1059.
[29]
Díaz-Godoy A, García-Ureña MA, López-Monclús J, et al. Searching for the best polypropylene mesh to be used in bowel contamination [J]. Hernia, 2011, 15(2): 173-179.
[30]
Zhu LM, Schuster P, Klinge U. Mesh implants: An overview of crucial mesh parameters[J]. World J Gastrointest Surg, 2015, 7(10): 226-236.
[31]
Lee SD, Son T, Lee JB, et al. Comparison of partially-absorbable lightweight mesh with heavyweight mesh for inguinal hernia repair: multicenter randomized study[J]. Ann Surg Treat Res, 2017, 93(6): 322-330.
[32]
Hirose T, Takayama Y, Komatsu S, et al. Randomized clinical trial comparing lightweight or heavyweight mesh for mesh plug repair of primary inguinal hernia[J]. Hernia, 2014, 18(2): 213-219.
[33]
Sidharta NX, Irawan A, Siregar J, et al. Comparison of Early Postoperative Pain between Lightweight Mesh and Heavyweight Mesh in Lichtenstein Hernia Repair for Geriatric Patients at Rumah Sakit Siloam Karawaci from January 2018 - December 2019[J]. Medicinus, 2023, 10: 10.
[34]
Sethi V, Verma C, Gupta A, et al. Infection-Resistant Polypropylene Hernia Mesh: Vision & Innovations[J]. ACS Appl Bio Mater, 2025, 8(3): 1797-1819.
[35]
Serrano-Aroca Á, Cano-Vicent A, Tuñón-Molina A, et al. Next generation meshes for hernia repair: Polypropylene meshes coated with antimicrobial benzalkonium chloride induced proliferative activity of fibroblasts[J]. Heliyon, 2024, 10(1): e24237.
[36]
Mirel S, Pusta A, Moldovan M, et al. Antimicrobial Meshes for Hernia Repair: Current Progress and Perspectives[J]. J Clin Med, 2022, 11(3): 883.
[37]
Guillaume O, Pérez-Tanoira R, Fortelny R, et al. Infections associated with mesh repairs of abdominal wall hernias: Are antimicrobial biomaterials the longed-for solution?[J]. Biomaterials, 2018, 167: 15-31.
[38]
Dydak K, Junka A, Nowacki G, et al. In Vitro Cytotoxicity, Colonisation by Fibroblasts and Antimicrobial Properties of Surgical Meshes Coated with Bacterial Cellulose[J]. Int J Mol Sci, 2022, 23(9): 4835.
[39]
Pérez-Köhler B, Benito-Martínez S, García-Moreno F, et al. Preclinical bioassay of a novel antibacterial mesh for the repair of abdominal hernia defects[J]. Surgery, 2020, 167(3): 598-608.
[40]
Saha T, Houshyar S, Sarker SR, et al. Nanodiamond-chitosan functionalized hernia mesh for biocompatibility and antimicrobial activity[J]. J Biomed Mater Res A, 2021, 109(12): 2449-2461.
[41]
Blázquez R, Sánchez-Margallo FM, Álvarez V, et al. Surgical meshes coated with mesenchymal stem cells provide an anti-inflammatory environment by a M2 macrophage polarization[J]. Acta Biomater, 2016, 31: 221-230.
[42]
Deng Y, Ren J, Chen G, et al. Evaluation of polypropylene mesh coated with biological hydrogels for temporary closure of open abdomen[J]. J Biomater Appl, 2016, 31(2): 302-314.
[43]
Du Souich P, García AG, Vergés J, et al. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate[J]. J Cell Mol Med, 2009, 13(8A): 1451-1463.
[44]
Venault A, Chang Y. Designs of Zwitterionic Interfaces and Membranes[J]. Langmuir, 2019, 35(5): 1714-1726.
[45]
Hu W, Zhang Z, Zhu L, et al. Combination of Polypropylene Mesh and in Situ Injectable Mussel-Inspired Hydrogel in Laparoscopic Hernia Repair for Preventing Post-Surgical Adhesions in the Piglet Model[J]. ACS Biomater Sci Eng, 2020, 6(3): 1735-1743.
[46]
Tandon A, Shahzad K, Pathak S, et al. Parietex™ Composite mesh versus DynaMesh®-IPOM for laparoscopic incisional and ventral hernia repair: a retrospective cohort study[J]. Ann R Coll Surg Engl, 2016, 98(8): 568-573.
[47]
Aydemir Sezer U, Sanko V, Gulmez M, et al. Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose[J]. Mater Sci Eng C Mater Biol Appl, 2019, 99: 1141-1152.
[48]
Hu M, Lin X, Huang R, et al. Lightweight, Highly Permeable, Biocompatible, and Antiadhesive Composite Meshes for Intraperitoneal Repairs[J]. Macromol Biosci, 2018, 18(7): e1800067.
[49]
Emans PJ, Schreinemacher MH, Gijbels MJ, et al. Polypropylene meshes to prevent abdominal herniation. Can stable coatings prevent adhesions in the long term?[J]. Ann Biomed Eng, 2009, 37(2): 410-418.
[50]
Minardi S, Taraballi F, Wang X, et al. Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model[J]. Acta Biomater, 2017, 50: 165-177.
[51]
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing[J]. Adv Mater, 2021, 33(39): e2100176.
[52]
Chyzy A, Plonska-Brzezinska ME. Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering[J]. Molecules, 2020, 25(24): 5795.
[53]
Yoon J, Yang HS, Lee BS, et al. Recent Progress in Coaxial Electrospinning: New Parameters, Various Structures, and Wide Applications[J]. Adv Mater, 2018, 30(42): e1704765.
[54]
Palmara G, Frascella F, Roppolo I, et al. Functional 3D printing: Approaches and bioapplications[J]. Biosens Bioelectron, 2021, 175: 112849.
[55]
Dong W, Song Z, Liu S, et al. Adipose-Derived Stem Cells Based on Electrospun Biomimetic Scaffold Mediated Endothelial Differentiation Facilitating Regeneration and Repair of Abdominal Wall Defects via HIF-1α/VEGF Pathway[J]. Front Bioeng Biotechnol, 2021, 9: 676409.
[56]
Qin M, Jin J, Saiding Q, et al. In situ inflammatory-regulated drug-loaded hydrogels for promoting pelvic floor repair[J]. J Control Release, 2020, 322: 375-389.
[57]
Liang W, He W, Huang R, et al. Peritoneum-Inspired Janus Porous Hydrogel with Anti-Deformation, Anti-Adhesion, and Pro-Healing Characteristics for Abdominal Wall Defect Treatment[J]. Adv Mater, 2022, 34(15): e2108992.
[58]
Cesur O, Tanir TE, Celepli P, et al. Enhancing esophageal repair with bioactive bilayer mesh containing FGF[J]. Sci Rep, 2021, 11(1): 19203.
[59]
Xing R, Gao R, Huangfu Y, et al. Bioactive microgel-coated electrospun membrane with cell-instructive interfaces and topology for abdominal wall defect repair[J]. Biomater Sci, 2024, 12(11): 2930-2942.
[60]
Liu J, Hou J, Liu S, et al. Graphene Oxide Functionalized Double-Layered Patch with Anti-Adhesion Ability for Abdominal Wall Defects[J]. Int J Nanomedicine, 2021, 16: 3803-3818.
[61]
Min SJ, Lee JS, Nah H, et al. Development of photo-crosslinkable platelet lysate-based hydrogels for 3D printing and tissue engineering [J]. Biofabrication, 2021, 13(4).
[62]
Ghosh U, Ning S, Wang Y, et al. Addressing Unmet Clinical Needs with 3D Printing Technologies[J]. Adv Healthc Mater, 2018, 7(17): e1800417.
[63]
Zhou Y, Yue Z, Chen Z, et al. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System[J]. Adv Healthc Mater, 2020, 9(24): e2001342.
[64]
Shin CS, Cabrera FJ, Lee R, et al. 3D-Bioprinted Inflammation Modulating Polymer Scaffolds for Soft Tissue Repair[J]. Adv Mater, 2021, 33(4): e2003778.
[65]
Hu Q, Wu J, Zhang H, et al. Designing Double-Layer Multimaterial Composite Patch Scaffold with Adhesion Resistance for Hernia Repair[J]. Macromol Biosci, 2022, 22(6): e2100510.
[66]
Ballard DH, Weisman JA, Jammalamadaka U, et al. Three-dimensional printing of bioactive hernia meshes: In vitro proof of principle[J]. Surgery, 2017, 161(6): 1479-1481.
[67]
Shapira A, Dvir T. 3D Tissue and Organ Printing-Hope and Reality[J]. Adv Sci(Weinh), 2021, 8(10): 2003751.
[68]
Zhang T, Zhang ZG, Hu W, et al. Preparation of poly(vinyl alcohol) modified polypropylene mesh and its antiadhesion efficacy in experimental hernia repair[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 500: 10-16.
[69]
Junge K, Klinge U, Rosch R, et al. Functional and morphologic properties of a modified mesh for inguinal hernia repair[J]. World J Surg, 2002, 26(12): 1472-1480.
[70]
Grant DN, Benson J, Cozad MJ, et al. Conjugation of gold nanoparticles to polypropylene mesh for enhanced biocompatibility [J]. J Mater Sci Mater Med, 2011, 22(12): 2803-2812.
[71]
Prassas D, Zaczek M, David SO, et al. Routine closed-suction drainage reduces seromas following totally extraperitoneal(TEP) inguinal hernia repair: A meta-analysis[J]. Medicine(Baltimore), 2024, 103(11): e37412.
[72]
Saxena S, Ray AR, Gupta B. Graft Polymerization of Acrylic Acid onto Polypropylene Monofilament by RF Plasma[J]. J Appl Polym Sci, 2010, 116(5): 2884-2892.
[73]
El-Hammadi MM, Arias JL. Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines[J]. Nanomaterials (Basel), 2022, 12(3): 354.
[74]
Han X, Liu Z, Sun L, et al. Bioinspired Janus Mesh with Mechanical Support and Side-specific Biofunctions for Hernia Repair[J]. Acta Biomater, 2025, 192: 218-234.
[75]
Chen W, Wang C, Gao Y, et al. Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration[J]. Carbohydr Polym, 2020, 229: 115544.
[76]
Xue J, Wu T, Dai Y, et al. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications[J]. Chem Rev, 2019, 119(8): 5298-5415.
[77]
Chalony C, Aguilar LE, Kim JY, et al. Development of electrospun core-shell polymeric mat using poly(ethyl-2) cyanoacrylate/polyurethane to attenuate biological adhesion on polymeric mesh implants[J]. Mater Sci Eng C Mater Biol Appl, 2021, 122: 111930.
[78]
Zhou X, Saiding Q, Wang X, et al. Regulated Exogenous/Endogenous Inflammation via "Inner-Outer" Medicated Electrospun Fibers for Promoting Tissue Reconstruction[J]. Adv Healthc Mater, 2022, 11(10): e2102534.
[79]
Afewerki S, Bassous N, Harb SV, et al. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair[J]. Commun Biol, 2021, 4(1): 233.
[80]
Hong Y, Huber A, Takanari K, et al. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold[J]. Biomaterials, 2011, 32(13): 3387-3394.
[81]
Browne K, Chakraborty S, Chen R, et al. A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides[J]. Int J Mol Sci, 2020, 21(19): 7047.
[82]
Xv Y, Xu L, Wei D, et al. A coaxial electrospun PLLA/PPDO/NAR mesh for abdominal wall hernia repair[J]. Biomed Mater, 2025, 20(2).
[83]
Lesage F, Roman S, Pranpanus S, et al. Modulation of the Early Host Response to Electrospun Polylactic Acid Matrices by Mesenchymal Stem Cells from the Amniotic Fluid[J]. Eur J Pediatr Surg, 2018, 28(3): 285-292.
[84]
Mekhaeel M, Kashyzadeh KZ, Protasov A, et al. AI-Based Evaluation of Polypropylene and Polyester Meshes in Lichtenstein Hernia Repair[J]. Archiv Euromedica, 2025, 15(2): 1-15.
[85]
Lima DL, Kasakewitch J, Nguyen DQ, et al. Machine learning, deep learning and hernia surgery. Are we pushing the limits of abdominal core health? A qualitative systematic review[J]. Hernia, 2024, 28(4): 1405-1412.
[86]
Restrepo-Rodas G, Barajas-Gamboa JS, Ortiz Aparicio FM, et al. The Role of AI in Modern Hernia Surgery: A Review and Practical Insights[J]. Surg Innov, 2025, 32(3): 301-311.
[87]
Vogel RV, Mück B. Artificial Intelligence-What to Expect From Machine Learning and Deep Learning in Hernia Surgery[J]. J Abdom Wall Surg, 2024, 3: 13059.
[88]
Hassan AM, Lu SC, Asaad M, et al. Novel Machine Learning Approach for the Prediction of Hernia Recurrence, Surgical Complication, and 30-Day Readmission after Abdominal Wall Reconstruction[J]. J Am Coll Surg, 2022, 234(5): 918-927.
[1] 张鑫, 余朝文, 王孝高, 李金泽, 陈世远. 颈动脉长段病变行颈动脉内膜剥脱生物补片成形术[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 382-382.
[2] 田文, 杨晓冬. 我国腹腔镜疝手术治疗难点与对策[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 359-361.
[3] 赵思琦, 孟岩, 孙中伟. 复合补片与生物补片在腹腔镜脐疝修补术中疗效对比研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(05): 535-538.
[4] 杨帅通, 戴勇, 李晓峰, 施丽娜, 路源, 姜超. 嵌顿性腹股沟疝诊治的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(05): 577-581.
[5] 刘德琦, 刘姗, 袁浩然, 王雯璇, 彭新刚. 疝补片材料研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(05): 582-588.
[6] 张兴洲, 魏明, 董国强, 张楠. 切口疝修补术后补片感染并发肠瘘及疝复发一例临床分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(05): 599-601.
[7] 杨松, 彭欢, 骆申英, 陈佳威, 陆瑶, 谢奇峰, 张剑. 基于肌耻骨孔修补原则对累及前盆与侧盆肿瘤的髂腹股沟区整块切除重建的策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(05): 485-492.
[8] 陈国良, 苏宁, 邵国益, 张剑. 基底膜生物补片内脏保护囊在负压辅助临时关腹治疗期间预防肠空气瘘的临床应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(05): 493-497.
[9] 陈佳威, 杨松, 陆瑶, 张剑. 基底膜生物疝修补补片防治空盆腔综合征的有效性和安全性[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(05): 498-504.
[10] 徐安军, 覃炳志, 吴德俊, 王一豪, 赵杰炳, 李诗媛, 王廷峰. 新型生物补片在污染/感染性腹股沟疝经腹腹膜前修补术中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(05): 505-510.
[11] 常帅, 赵耀, 张迪, 李顺乐, 翟宏军, 吉鸿. 腹腔镜经腹腹膜前修补术与腹腔镜腹腔内补片修补术治疗脐疝的对比研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(05): 529-534.
[12] 刘琪, 张亚伟, 符洋. 肿瘤相关腹壁疾病的诊疗策略与重建技术[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 365-370.
[13] 毛永欢, 朱浩, 张简之, 缪骥, 李强, 喻春钊. 结肠造口还纳联合生物补片置入术的临床应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 434-437.
[14] 依力帕·肖克来提, 王丹, 李义亮. 生物补片在腹腔镜食管裂孔疝修补术中的应用进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 470-474.
[15] 胡启明, 宋佳成, 孙莹, 黄骁昊. 单孔腹腔镜切除AWE及补片修复术的临床应用评估[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(04): 215-221.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?