| [1] |
Saiding Q, Chen Y, Wang J, et al. Abdominal wall hernia repair: from prosthetic meshes to smart materials[J]. Mater Today Bio, 2023, 29(21): 100691.
|
| [2] |
Bringman S, Conze J, Cuccurullo D, et al. Hernia repair: the search for ideal meshes[J]. Hernia, 2010, 14(1): 81-87.
|
| [3] |
Pérez-Köhler B, Benito-Martínez S, Gómez-Gil V, et al. New Insights into the Application of 3D-Printing Technology in Hernia Repair[J]. Materials(Basel), 2021, 14(22): 7092.
|
| [4] |
Smart NJ, Marshall M, Daniels IR. Biological meshes: a review of their use in abdominal wall hernia repairs[J]. Surgeon, 2012, 10(3): 159-171.
|
| [5] |
Falagas ME, Kasiakou SK. Mesh-related infections after hernia repair surgery[J]. Clin Microbiol Infect, 2005, 11(1): 3-8.
|
| [6] |
Sawyer M, Ferzoco S, DeNoto G 3rd. A Polymer-Biologic Hybrid Hernia Construct: Review of Data and Early Experiences[J]. Polymers(Basel), 2021, 13(12): 1928.
|
| [7] |
Rastegarpour A, Cheung M, Vardhan M, et al. Surgical mesh for ventral incisional hernia repairs: Understanding mesh design[J]. Plast Surg(Oakv), 2016, 24(1): 41-50.
|
| [8] |
Lussier G, Evans AJ, Houston I, et al. Compact Arterial Monitoring Device Use in Resuscitative Endovascular Balloon Occlusion of the Aorta(REBOA): A Simple Validation Study in Swine[J]. Cureus, 2024, 16(10): e70789.
|
| [9] |
De Tayrac R, Oliva-Lauraire MC, Guiraud I, et al. Longlasting bioresorbable poly(lactic acid)(PLA94) mesh: a new approach for soft tissue reinforcement based on an experimental pilot study[J]. Int Urogynecol J Pelvic Floor Dysfunct, 2007, 18(9): 1007-1014.
|
| [10] |
Buell JF, Sigmon D, Ducoin CS, et al. Initial Experience with Biologic Polymer Scaffold(Poly-4-hydroxybuturate) in Complex Abdominal Wall Reconstruction[J]. Ann Surg, 2017, 266(1): 185-188.
|
| [11] |
Huang K, Ding X, Lv B, et al. Reconstruction of large-size abdominal wall defect using biodegradable poly-p-dioxanone mesh: an experimental canine study[J]. World J Surg Oncol, 2014, 12: 57.
|
| [12] |
Priego Jiménez P, Salvador Sanchís JL, Angel V, et al. Short-term results for laparoscopic repair of large paraesophageal hiatal hernias with Gore Bio A® mesh[J]. Int J Surg, 2014, 12(8): 794-797.
|
| [13] |
Chiu YL, Lin YN, Chen YJ, et al. Efficacy of Supercritical Fluid Decellularized Porcine Acellular Dermal Matrix in the Post-Repair of Full-Thickness Abdominal Wall Defects in the Rabbit Hernia Model[J]. Processes, 2022, 10(12): 2588.
|
| [14] |
Garvey PB, Giordano SA, Baumann DP, et al. Long-Term Outcomes after Abdominal Wall Reconstruction with Acellular Dermal Matrix[J]. J Am Coll Surg, 2017, 224(3): 341-350.
|
| [15] |
Bellows CF, Alder A, Helton WS. Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities [J]. Expert Rev Med Devices, 2006, 3(5): 657-675.
|
| [16] |
Köckerling F, Alam NN, Antoniou SA, et al. What is the evidence for the use of biologic or biosynthetic meshes in abdominal wall reconstruction?[J]. Hernia, 2018, 22(2): 249-269.
|
| [17] |
Rodríguez M, Gómez-Gil V, Pérez-Köhler B, et al. Polymer Hernia Repair Materials: Adapting to Patient Needs and Surgical Techniques[J]. Materials(Basel), 2021, 14(11): 2790.
|
| [18] |
Costa A, Adamo S, Gossetti F, et al. Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application?[J]. Materials (Basel), 2019, 12(15): 2375.
|
| [19] |
Najm A, Niculescu AG, Gaspar BS, et al. A Review of Abdominal Meshes for Hernia Repair-Current Status and Emerging Solutions[J]. Materials(Basel), 2023, 16(22): 7124.
|
| [20] |
Winsnes A, Haapamäki MM, Gunnarsson U, et al. Surgical outcome of mesh and suture repair in primary umbilical hernia: postoperative complications and recurrence[J]. Hernia, 2016, 20(4): 509-516.
|
| [21] |
仝聪, 李泽雨, 阎立昆. 补片相关并发症:中国疝外科亟待重视的临床挑战[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(3): 253-257.
|
| [22] |
Sanders DL, Kingsnorth AN. Prosthetic mesh materials used in hernia surgery[J]. Expert Rev Med Devices, 2012, 9(2): 159-179.
|
| [23] |
Klinge U, Park JK, Klosterhalfen B. The Ideal Mesh?[J]. Pathobiology, 2013, 80(4): 169-175.
|
| [24] |
陈静宇, 洪阁, 郭宁, 等. 疝修复补片:材料设计与应用的最新进展[J]. 中国组织工程研究, 2025, 29(16): 3494-3502.
|
| [25] |
Kalaba S, Gerhard E, Winder JS, et al. Design Strategies and Applications of Biomaterials and Devices for Hernia Repair[J]. Bioact Mater, 2016, 1(1): 2-17.
|
| [26] |
Sanbhal N, Miao L, Xu R, et al. Physical structure and mechanical properties of knitted hernia mesh materials: a review[J]. J Ind Text, 2018, 48(1): 333-360.
|
| [27] |
Papadimitriou J, Petros P. Histological studies of monofilament and multifilament polypropylene mesh implants demonstrate equivalent penetration of macrophages between fibrils[J]. Hernia, 2005, 9(1): 75-78.
|
| [28] |
Engelsman AF, van der Mei HC, Busscher HJ, et al. Morphological aspects of surgical meshes as a risk factor for bacterial colonization [J]. Br J Surg, 2008, 95(8): 1051-1059.
|
| [29] |
Díaz-Godoy A, García-Ureña MA, López-Monclús J, et al. Searching for the best polypropylene mesh to be used in bowel contamination [J]. Hernia, 2011, 15(2): 173-179.
|
| [30] |
Zhu LM, Schuster P, Klinge U. Mesh implants: An overview of crucial mesh parameters[J]. World J Gastrointest Surg, 2015, 7(10): 226-236.
|
| [31] |
Lee SD, Son T, Lee JB, et al. Comparison of partially-absorbable lightweight mesh with heavyweight mesh for inguinal hernia repair: multicenter randomized study[J]. Ann Surg Treat Res, 2017, 93(6): 322-330.
|
| [32] |
Hirose T, Takayama Y, Komatsu S, et al. Randomized clinical trial comparing lightweight or heavyweight mesh for mesh plug repair of primary inguinal hernia[J]. Hernia, 2014, 18(2): 213-219.
|
| [33] |
Sidharta NX, Irawan A, Siregar J, et al. Comparison of Early Postoperative Pain between Lightweight Mesh and Heavyweight Mesh in Lichtenstein Hernia Repair for Geriatric Patients at Rumah Sakit Siloam Karawaci from January 2018 - December 2019[J]. Medicinus, 2023, 10: 10.
|
| [34] |
Sethi V, Verma C, Gupta A, et al. Infection-Resistant Polypropylene Hernia Mesh: Vision & Innovations[J]. ACS Appl Bio Mater, 2025, 8(3): 1797-1819.
|
| [35] |
Serrano-Aroca Á, Cano-Vicent A, Tuñón-Molina A, et al. Next generation meshes for hernia repair: Polypropylene meshes coated with antimicrobial benzalkonium chloride induced proliferative activity of fibroblasts[J]. Heliyon, 2024, 10(1): e24237.
|
| [36] |
Mirel S, Pusta A, Moldovan M, et al. Antimicrobial Meshes for Hernia Repair: Current Progress and Perspectives[J]. J Clin Med, 2022, 11(3): 883.
|
| [37] |
Guillaume O, Pérez-Tanoira R, Fortelny R, et al. Infections associated with mesh repairs of abdominal wall hernias: Are antimicrobial biomaterials the longed-for solution?[J]. Biomaterials, 2018, 167: 15-31.
|
| [38] |
Dydak K, Junka A, Nowacki G, et al. In Vitro Cytotoxicity, Colonisation by Fibroblasts and Antimicrobial Properties of Surgical Meshes Coated with Bacterial Cellulose[J]. Int J Mol Sci, 2022, 23(9): 4835.
|
| [39] |
Pérez-Köhler B, Benito-Martínez S, García-Moreno F, et al. Preclinical bioassay of a novel antibacterial mesh for the repair of abdominal hernia defects[J]. Surgery, 2020, 167(3): 598-608.
|
| [40] |
Saha T, Houshyar S, Sarker SR, et al. Nanodiamond-chitosan functionalized hernia mesh for biocompatibility and antimicrobial activity[J]. J Biomed Mater Res A, 2021, 109(12): 2449-2461.
|
| [41] |
Blázquez R, Sánchez-Margallo FM, Álvarez V, et al. Surgical meshes coated with mesenchymal stem cells provide an anti-inflammatory environment by a M2 macrophage polarization[J]. Acta Biomater, 2016, 31: 221-230.
|
| [42] |
Deng Y, Ren J, Chen G, et al. Evaluation of polypropylene mesh coated with biological hydrogels for temporary closure of open abdomen[J]. J Biomater Appl, 2016, 31(2): 302-314.
|
| [43] |
Du Souich P, García AG, Vergés J, et al. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate[J]. J Cell Mol Med, 2009, 13(8A): 1451-1463.
|
| [44] |
Venault A, Chang Y. Designs of Zwitterionic Interfaces and Membranes[J]. Langmuir, 2019, 35(5): 1714-1726.
|
| [45] |
Hu W, Zhang Z, Zhu L, et al. Combination of Polypropylene Mesh and in Situ Injectable Mussel-Inspired Hydrogel in Laparoscopic Hernia Repair for Preventing Post-Surgical Adhesions in the Piglet Model[J]. ACS Biomater Sci Eng, 2020, 6(3): 1735-1743.
|
| [46] |
Tandon A, Shahzad K, Pathak S, et al. Parietex™ Composite mesh versus DynaMesh®-IPOM for laparoscopic incisional and ventral hernia repair: a retrospective cohort study[J]. Ann R Coll Surg Engl, 2016, 98(8): 568-573.
|
| [47] |
Aydemir Sezer U, Sanko V, Gulmez M, et al. Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose[J]. Mater Sci Eng C Mater Biol Appl, 2019, 99: 1141-1152.
|
| [48] |
Hu M, Lin X, Huang R, et al. Lightweight, Highly Permeable, Biocompatible, and Antiadhesive Composite Meshes for Intraperitoneal Repairs[J]. Macromol Biosci, 2018, 18(7): e1800067.
|
| [49] |
Emans PJ, Schreinemacher MH, Gijbels MJ, et al. Polypropylene meshes to prevent abdominal herniation. Can stable coatings prevent adhesions in the long term?[J]. Ann Biomed Eng, 2009, 37(2): 410-418.
|
| [50] |
Minardi S, Taraballi F, Wang X, et al. Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model[J]. Acta Biomater, 2017, 50: 165-177.
|
| [51] |
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing[J]. Adv Mater, 2021, 33(39): e2100176.
|
| [52] |
Chyzy A, Plonska-Brzezinska ME. Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering[J]. Molecules, 2020, 25(24): 5795.
|
| [53] |
Yoon J, Yang HS, Lee BS, et al. Recent Progress in Coaxial Electrospinning: New Parameters, Various Structures, and Wide Applications[J]. Adv Mater, 2018, 30(42): e1704765.
|
| [54] |
Palmara G, Frascella F, Roppolo I, et al. Functional 3D printing: Approaches and bioapplications[J]. Biosens Bioelectron, 2021, 175: 112849.
|
| [55] |
Dong W, Song Z, Liu S, et al. Adipose-Derived Stem Cells Based on Electrospun Biomimetic Scaffold Mediated Endothelial Differentiation Facilitating Regeneration and Repair of Abdominal Wall Defects via HIF-1α/VEGF Pathway[J]. Front Bioeng Biotechnol, 2021, 9: 676409.
|
| [56] |
Qin M, Jin J, Saiding Q, et al. In situ inflammatory-regulated drug-loaded hydrogels for promoting pelvic floor repair[J]. J Control Release, 2020, 322: 375-389.
|
| [57] |
Liang W, He W, Huang R, et al. Peritoneum-Inspired Janus Porous Hydrogel with Anti-Deformation, Anti-Adhesion, and Pro-Healing Characteristics for Abdominal Wall Defect Treatment[J]. Adv Mater, 2022, 34(15): e2108992.
|
| [58] |
Cesur O, Tanir TE, Celepli P, et al. Enhancing esophageal repair with bioactive bilayer mesh containing FGF[J]. Sci Rep, 2021, 11(1): 19203.
|
| [59] |
Xing R, Gao R, Huangfu Y, et al. Bioactive microgel-coated electrospun membrane with cell-instructive interfaces and topology for abdominal wall defect repair[J]. Biomater Sci, 2024, 12(11): 2930-2942.
|
| [60] |
Liu J, Hou J, Liu S, et al. Graphene Oxide Functionalized Double-Layered Patch with Anti-Adhesion Ability for Abdominal Wall Defects[J]. Int J Nanomedicine, 2021, 16: 3803-3818.
|
| [61] |
Min SJ, Lee JS, Nah H, et al. Development of photo-crosslinkable platelet lysate-based hydrogels for 3D printing and tissue engineering [J]. Biofabrication, 2021, 13(4).
|
| [62] |
Ghosh U, Ning S, Wang Y, et al. Addressing Unmet Clinical Needs with 3D Printing Technologies[J]. Adv Healthc Mater, 2018, 7(17): e1800417.
|
| [63] |
Zhou Y, Yue Z, Chen Z, et al. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System[J]. Adv Healthc Mater, 2020, 9(24): e2001342.
|
| [64] |
Shin CS, Cabrera FJ, Lee R, et al. 3D-Bioprinted Inflammation Modulating Polymer Scaffolds for Soft Tissue Repair[J]. Adv Mater, 2021, 33(4): e2003778.
|
| [65] |
Hu Q, Wu J, Zhang H, et al. Designing Double-Layer Multimaterial Composite Patch Scaffold with Adhesion Resistance for Hernia Repair[J]. Macromol Biosci, 2022, 22(6): e2100510.
|
| [66] |
Ballard DH, Weisman JA, Jammalamadaka U, et al. Three-dimensional printing of bioactive hernia meshes: In vitro proof of principle[J]. Surgery, 2017, 161(6): 1479-1481.
|
| [67] |
Shapira A, Dvir T. 3D Tissue and Organ Printing-Hope and Reality[J]. Adv Sci(Weinh), 2021, 8(10): 2003751.
|
| [68] |
Zhang T, Zhang ZG, Hu W, et al. Preparation of poly(vinyl alcohol) modified polypropylene mesh and its antiadhesion efficacy in experimental hernia repair[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 500: 10-16.
|
| [69] |
Junge K, Klinge U, Rosch R, et al. Functional and morphologic properties of a modified mesh for inguinal hernia repair[J]. World J Surg, 2002, 26(12): 1472-1480.
|
| [70] |
Grant DN, Benson J, Cozad MJ, et al. Conjugation of gold nanoparticles to polypropylene mesh for enhanced biocompatibility [J]. J Mater Sci Mater Med, 2011, 22(12): 2803-2812.
|
| [71] |
Prassas D, Zaczek M, David SO, et al. Routine closed-suction drainage reduces seromas following totally extraperitoneal(TEP) inguinal hernia repair: A meta-analysis[J]. Medicine(Baltimore), 2024, 103(11): e37412.
|
| [72] |
Saxena S, Ray AR, Gupta B. Graft Polymerization of Acrylic Acid onto Polypropylene Monofilament by RF Plasma[J]. J Appl Polym Sci, 2010, 116(5): 2884-2892.
|
| [73] |
El-Hammadi MM, Arias JL. Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines[J]. Nanomaterials (Basel), 2022, 12(3): 354.
|
| [74] |
Han X, Liu Z, Sun L, et al. Bioinspired Janus Mesh with Mechanical Support and Side-specific Biofunctions for Hernia Repair[J]. Acta Biomater, 2025, 192: 218-234.
|
| [75] |
Chen W, Wang C, Gao Y, et al. Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration[J]. Carbohydr Polym, 2020, 229: 115544.
|
| [76] |
Xue J, Wu T, Dai Y, et al. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications[J]. Chem Rev, 2019, 119(8): 5298-5415.
|
| [77] |
Chalony C, Aguilar LE, Kim JY, et al. Development of electrospun core-shell polymeric mat using poly(ethyl-2) cyanoacrylate/polyurethane to attenuate biological adhesion on polymeric mesh implants[J]. Mater Sci Eng C Mater Biol Appl, 2021, 122: 111930.
|
| [78] |
Zhou X, Saiding Q, Wang X, et al. Regulated Exogenous/Endogenous Inflammation via "Inner-Outer" Medicated Electrospun Fibers for Promoting Tissue Reconstruction[J]. Adv Healthc Mater, 2022, 11(10): e2102534.
|
| [79] |
Afewerki S, Bassous N, Harb SV, et al. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair[J]. Commun Biol, 2021, 4(1): 233.
|
| [80] |
Hong Y, Huber A, Takanari K, et al. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold[J]. Biomaterials, 2011, 32(13): 3387-3394.
|
| [81] |
Browne K, Chakraborty S, Chen R, et al. A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides[J]. Int J Mol Sci, 2020, 21(19): 7047.
|
| [82] |
Xv Y, Xu L, Wei D, et al. A coaxial electrospun PLLA/PPDO/NAR mesh for abdominal wall hernia repair[J]. Biomed Mater, 2025, 20(2).
|
| [83] |
Lesage F, Roman S, Pranpanus S, et al. Modulation of the Early Host Response to Electrospun Polylactic Acid Matrices by Mesenchymal Stem Cells from the Amniotic Fluid[J]. Eur J Pediatr Surg, 2018, 28(3): 285-292.
|
| [84] |
Mekhaeel M, Kashyzadeh KZ, Protasov A, et al. AI-Based Evaluation of Polypropylene and Polyester Meshes in Lichtenstein Hernia Repair[J]. Archiv Euromedica, 2025, 15(2): 1-15.
|
| [85] |
Lima DL, Kasakewitch J, Nguyen DQ, et al. Machine learning, deep learning and hernia surgery. Are we pushing the limits of abdominal core health? A qualitative systematic review[J]. Hernia, 2024, 28(4): 1405-1412.
|
| [86] |
Restrepo-Rodas G, Barajas-Gamboa JS, Ortiz Aparicio FM, et al. The Role of AI in Modern Hernia Surgery: A Review and Practical Insights[J]. Surg Innov, 2025, 32(3): 301-311.
|
| [87] |
Vogel RV, Mück B. Artificial Intelligence-What to Expect From Machine Learning and Deep Learning in Hernia Surgery[J]. J Abdom Wall Surg, 2024, 3: 13059.
|
| [88] |
Hassan AM, Lu SC, Asaad M, et al. Novel Machine Learning Approach for the Prediction of Hernia Recurrence, Surgical Complication, and 30-Day Readmission after Abdominal Wall Reconstruction[J]. J Am Coll Surg, 2022, 234(5): 918-927.
|