| [1] |
Kingsnorth A, Leblanc K. Hernias: inguinal and incisional[J]. Lancet, 2003, 362(9395): 1561-1571.
|
| [2] |
Tonelli CM, Lorenzo I, Bunn C, et al. Contemporary Matched- Cohort Comparison of Surgical Approach to Inguinal Hernia Repair: Are Minimally Invasive Approaches Associated with Higher Rates of Recurrence?[J]. J Am Coll Surg, 2022, 235(1): 119-127.
|
| [3] |
Yang L, Wang H, Liang X, et al. Bacteria in hernia sac: an important risk fact for surgical site infection after incarcerated hernia repair[J]. Hernia, 2015, 19(2): 279-283.
|
| [4] |
Hentati H, Dougaz W, Dziri C. Mesh repair versus non-mesh repair for strangulated inguinal hernia: systematic review with meta-analysis[J]. World J Surg, 2014, 38(11): 2784-2790.
|
| [5] |
Venara A, Hubner M, Le Naoures P, et al. Surgery for incarcerated hernia: short-term outcome with or without mesh[J]. Langenbecks Arch Surg, 2014, 399(5): 571-577.
|
| [6] |
Kurt N, Oncel M, Ozkan Z, et al. Risk and outcome of bowel resection in patients with incarcerated groin hernias: retrospective study[J]. World J Surg, 2003, 27(6): 741-743.
|
| [7] |
HerniaSurge Group. International guidelines for groin hernia management[J]. Hernia, 2018, 22(1): 1-165.
|
| [8] |
Dai W, Chen Z, Zuo J, et al. Risk factors of postoperative complications after emergency repair of incarcerated groin hernia for adult patients: a retrospective cohort study[J]. Hernia, 2019, 23(2): 267-276.
|
| [9] |
SæTer AH, Fonnes S, Li S, et al. Mesh versus non-mesh for emergency groin hernia repair[J]. Cochrane Database Syst Rev, 2023, 11(11): Cd015160.
|
| [10] |
EkWesianya AC, Ayantunde A, Nour HM. Assessing the Safety of Mesh Repair in Strangulated Groin Hernias: A Systematic Review and Meta-Analysis[J]. Cureus, 2024, 16(9): e70496.
|
| [11] |
Lockhart K, Dunn D, Teo S, et al. Mesh versus non-mesh for inguinal and femoral hernia repair[J]. Cochrane Database Syst Rev, 2018, 9(9): Cd011517.
|
| [12] |
Golebiowska AA, Intravaia JT, Sathe VM, et al. Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects[J]. Bioact Mater, 2024, 32: 98-123.
|
| [13] |
Nosheen S, Mukhtar H, Haider S, et al. Tissue engineered multifunctional chitosan-modified polypropylene hernia mesh loaded with bioactive phyto-extracts[J]. Int J Biol Macromol, 2024, 271(Pt 1): 132282.
|
| [14] |
Katzen M, Ayuso SA, Sacco J, et al. Outcomes of biologic versus synthetic mesh in CDC class 3 and 4 open abdominal wall reconstruction[J]. Surg Endosc, 2023, 37(4): 3073-3083.
|
| [15] |
Jin C, Tong D, Shen Y. Outcomes of porcine small intestinal submucosa mesh compared to polypropylene mesh in laparoscopic transabdominal preperitoneal inguinal hernia repair: a retrospective cohort study[J]. Surg Endosc, 2025, 39(2): 952-959.
|
| [16] |
Ober I, Stuleanu T, Ball CG, et al. It all doesn't always have to go: abdominal wall reconstruction involving selective synthetic mesh explantation with biologic mesh salvage[J]. Can J Surg, 2023, 66(1): e48-e51.
|
| [17] |
Rosen MJ, Krpata DM, Petro CC, et al. Biologic vs Synthetic Mesh for Single-stage Repair of Contaminated Ventral Hernias: A Randomized Clinical Trial[J]. JAMA Surg, 2022, 157(4): 293-301.
|
| [18] |
中华医学会外科学分会疝与腹壁外科学组,中国医师协会外科医师分会疝和腹壁外科专家工作组. 腹股沟疝诊疗指南(2024版)[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(1): 1-8.
|
| [19] |
Diab MM, Patel S, Young C, et al. Quality of life measures and cost analysis of biologic versus synthetic mesh for ventral hernia repair: The Preventing Recurrence in Clean and Contaminated Hernias randomized clinical trial[J]. Surgery, 2024, 175(4): 1063-1070.
|
| [20] |
Yu S, Ma P. Mechanical properties of warp-knitted hernia repair mesh with various boundary conditions[J]. J Mech Behav Biomed Mater, 2021, 114: 104192.
|
| [21] |
da Silveira CAB, Kasakewitch JPG, Marcolin P, et al. Exploring low-cost mesh alternatives for groin hernia repair: a systematic review and meta-analysis of randomized controlled trials[J]. Hernia, 2024, 29(1): 5.
|
| [22] |
Purkayastha DS, Mallick AA, Das G, et al. Inguinal hernia mesh infections: Chronic challenges, atypical pathogens and lessons in sterilisation[J]. Trop Doct, 2025, 55(2): 134-138.
|
| [23] |
Goetz M, Jurczyk M, Junger H, et al. Semiresorbable biologic hybrid meshes for ventral abdominal hernia repair in potentially contaminated settings: lower risk of recurrence[J]. Updates Surg, 2022, 74(6): 1995-2001.
|
| [24] |
Vestberg R, Lecuivre J, Radlovic A, et al. A novel self-gripping long-term resorbable mesh providing temporary support for open primary ventral and incisional hernia[J]. J Mater Sci Mater Med, 2023, 34(11): 59.
|
| [25] |
Zhong W, Chen J, Xie Q, et al. A Novel UBM/SIS Composite Biological Scaffold for 2-Year Abdominal Defect Repairing and Strength Recovery in Canine Model[J]. Adv Biol(Weinh), 2025, 9(1): e2400131.
|
| [26] |
Dorkhani e, Darzi B, Foroutani L, et al. Characterization and in vivo evaluation of a fabricated absorbable poly(vinyl alcohol)-based hernia mesh[J]. Heliyon, 2023, 9(11): e22279.
|
| [27] |
Li Y, Lv Y, Li J, et al. Dexamethasone relieves the inflammatory response caused by inguinal hernia meshes through miR-155[J]. Hernia, 2024, 28(4): 1113-1119.
|
| [28] |
Liu Z, Liu X, Bao L, et al. The evaluation of functional small intestinal submucosa for abdominal wall defect repair in a rat model: Potent effect of sequential release of VEGF and TGF-β1 on host integration[J]. Biomaterials, 2021, 276: 120999.
|
| [29] |
Strohalmová S, Levová K, Kuběna AA, et al. The effect of surgery on the levels of matrix metalloproteinases in patients with inguinal hernia[J]. Physiol Res, 2021, 70(4): 627-634.
|
| [30] |
Zavareh ZK, Asbagh RA, Hajikhani K, et al. Reinforcing decellularized small intestine submucosa with cellulose acetate nanofibrous and silver nanoparticles as a scaffold for wound healing applications[J]. Mol Biol Rep, 2024, 51(1): 658.
|
| [31] |
Mazzola poli DE Figueiredo S, Tastaldi L, Mao RD, et al. Biologic versus synthetic mesh in open ventral hernia repair: A systematic review and meta-analysis of randomized controlled trials[J]. Surgery, 2023, 173(4): 1001-1007.
|
| [32] |
Köckerling F, Alam NN, Antoniou SA, et al. What is the evidence for the use of biologic or biosynthetic meshes in abdominal wall reconstruction?[J]. Hernia, 2018, 22(2): 249-269.
|
| [33] |
刘正尼,郭彦平,汤睿. 时序释放血管内皮生长因子和转化生长因子β1的功能化生物补片在修复大鼠腹壁部分缺损中的应用[J]. 上海医学, 2022, 45(4): 245-252.
|
| [34] |
Grabska-Zielińska S. Cross-Linking Agents in Three-Component Materials Dedicated to Biomedical Applications: A Review[J]. Polymers(Basel), 2024, 16(18): 2679.
|
| [35] |
Peebles KE, Lafever KS, Page-Mccaw PS, et al. Peroxidasin is required for full viability in development and for maintenance of tissue mechanics in adults[J]. Matrix Biol, 2024, 125: 1-11.
|
| [36] |
Delgado LM, Bayon Y, Pandit A, et al. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices[J]. Tissue Eng Part B Rev, 2015, 21(3): 298-313.
|
| [37] |
Kamal TR, Tyraskis A, Ghattaura H, et al. Synthetic versus Biological Patches for CDH: A Comparison of Recurrence Rates and Adverse Events, Systematic Review, and Meta-Analysis[J]. Eur J Pediatr Surg, 2023, 33(3): 198-209.
|
| [38] |
Sadtler K, Sommerfeld SD, Wolf MT, et al. Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury[J]. Semin Immunol, 2017, 29: 14-23.
|
| [39] |
Wang Q, Cao M, Tao H, et al. Evidence-based guideline for the prevention and management of perioperative infection[J]. J Evid Based Med, 2023, 16(1): 50-67.
|
| [40] |
Wilson RB, Farooque Y. Risks and Prevention of Surgical Site Infection After Hernia Mesh Repair and the Predictive Utility of ACS-NSQIP[J]. J Gastrointest Surg, 2022, 26(4): 950-964.
|
| [41] |
陈宇航,刘晓明,李海波,等. 腹腔镜经腹腹膜前疝修补术在成人腹股沟嵌顿疝中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2019, 13(2): 179-182.
|
| [42] |
Eminoğlu L. Is TAPP the right alternative for patients undergoing emergency surgery for incarcerated inguinal hernia?[J]. Ulus Travma Acil Cerrahi Derg, 2024, 30(2): 97-100.
|