| [1] |
Xu LS, Li Q, Wang Y, et al. Current status and progress of laparoscopic inguinal hernia repair: A review[J]. Medicine(Baltimore), 2023, 102(31): e34554.
|
| [2] |
Wang F, Ma B, Ma Q, et al. Global, regional, and national burden of inguinal, femoral, and abdominal hernias: a systematic analysis of prevalence, incidence, deaths, and DALYs with projections to 2030[J]. Int J Surg, 2024, 110(4): 1951-1967.
|
| [3] |
Schmidt A, Taylor D. Erosion of soft tissue by polypropylene mesh products[J]. J Mech Behav Biomed Mater, 2021, 115: 104281.
|
| [4] |
Zogbi L, Trindade EN, Trindade MR. Comparative study of shrinkage, inflammatory response and fibroplasia in heavyweight and lightweight meshes[J]. Hernia, 2013, 17(6): 765-772.
|
| [5] |
于凡,伍波,康杰. 疝修补材料的研究进展及展望[J]. 外科理论与实践, 2022, 27(4): 375-379.
|
| [6] |
Reinbold J, Hierlemann T, Urich L, et al. Biodegradable rifampicin- releasing coating of surgical meshes for the prevention of bacterial infections[J]. Drug Des Devel Ther, 2017, 11: 2753-2762.
|
| [7] |
Houshyar S, Sarker A, Jadhav A, et al. Polypropylene-nanodiamond composite for hernia mesh[J]. Mater Sci Eng C Mater Biol Appl, 2020, 111: 110780.
|
| [8] |
Zhao Y, Li X, Sun N, et al. Injectable Double Crosslinked Hydrogel-Polypropylene Composite Mesh for Repairing Full-Thickness Abdominal Wall Defects[J]. Adv Healthc Mater, 2024, 13(15): e2304489.
|
| [9] |
过文泰,胡民辉,黄榕康,等. 疝外科材料学百年发展及未来展望[J]. 中华胃肠外科杂志, 2018, 21(7): 828-832.
|
| [10] |
Usher FC. Hernia repair with Marlex mesh. An analysis of 541 cases[J]. Arch Surg, 1962, 84: 325-328.
|
| [11] |
Pande T, Naidu CS. Mesh infection in cases of polypropylene mesh hernioplasty[J]. Hernia, 2020, 24(4): 849-856.
|
| [12] |
李绍春,顾岩,胡星辰,等. 不同聚丙烯补片在成人腹股沟疝修补术中的应用价值[J]. 中华消化外科杂志, 2020, 19(7): 767-772.
|
| [13] |
Wolstenholme JT. Use of commercial dacron fabric in the repair of inguinal hernias and abdominal wall defects[J]. AMA Arch Surg, 1956, 73(6): 1004-1008.
|
| [14] |
Stavert B, Chan DL, Ozmen J, et al. Laparoscopic totally extra-peritoneal groin hernia repair with self-gripping polyester mesh: a series of 780 repairs[J]. ANZ J Surg, 2019, 89(10): 1261-1264.
|
| [15] |
Saiding Q, Chen Y, Wang J, et al. Abdominal wall hernia repair: from prosthetic meshes to smart materials[J]. Mater Today Bio, 2023, 21: 100691.
|
| [16] |
秦昌富,申英末. 生物可降解补片在青少年和青壮年腹股沟疝修补术中的应用[J]. 中华消化外科杂志, 2023, 22(9): 1047-1053.
|
| [17] |
靳翠红,曹金鑫,吴立胜,等. 猪小肠黏膜下层脱细胞基质补片在腹腔镜腹股沟疝修补术中应用价值的多中心前瞻性随机对照研究[J]. 中华消化外科杂志, 2024, 23(9): 1188-1194.
|
| [18] |
薛佩,李绍杰,乐飞,等. 新型生物补片在腹腔镜腹股沟疝修补术中临床价值的多中心前瞻性随机对照研究[J]. 中华消化外科杂志, 2023, 22(4): 532-540.
|
| [19] |
Sasse KC, Lambin JH, Gevorkian J, et al. Long-term clinical, radiological, and histological follow-up after complex ventral incisional hernia repair using urinary bladder matrix graft reinforcement: a retrospective cohort study[J]. Hernia, 2018, 22(6): 899-907.
|
| [20] |
Hassan AM, Franco CM, Shah NR, et al. Outcomes of Complex Abdominal Wall Reconstruction with Biologic Mesh in Patients with 8 Years of Follow-Up[J]. World J Surg, 2023, 47(12): 3175-3181.
|
| [21] |
孟云潇,司仙科,平定,等. 复合生物补片在腹股沟疝修补术中远期临床价值的多中心前瞻性随机对照研究[J]. 中华消化外科杂志, 2023, 22(9): 1069-1074.
|
| [22] |
Wolf MT, Carruthers CA, Dearth CL, et al. Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response[J]. J Biomed Mater Res A, 2014, 102(1): 234-246.
|
| [23] |
Yang S, Wu B, Wang Y, et al. Repair of a medium-sized ventral hernia with the UltraPro Hernia System[J]. Surg Today, 2021, 51(6): 1068-1073.
|
| [24] |
Luan F, Cao W, Cao C, et al. Construction and properties of the silk fibroin and polypropylene composite biological mesh for abdominal incisional hernia repair[J]. Front Bioeng Biotechnol, 2022, 10: 949917.
|
| [25] |
黄浩男,汤福鑫,马宁,等. 聚丙烯及其改性疝修补补片的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(2): 150-154.
|
| [26] |
Yurtkap Y, Jairam AP, Kaufmann R, et al. Zinc-Impregnated Mesh for Abdominal Wall Repair Reduces Infection in a Rat Model of Peritonitis[J]. J Surg Res, 2020, 246: 560-567.
|
| [27] |
Zhang N, Huang Y, Wei P, et al. Killing two birds with one stone: A therapeutic copper-loaded bio-patch promoted abdominal wall repair via VEGF pathway[J]. Mater Today Bio, 2023, 22: 100785.
|
| [28] |
Ayuso SA, Aladegbami BG, Kercher KW, et al. Coated Polypropylene Mesh Is Associated With Increased Infection in Abdominal Wall Reconstruction[J]. J Surg Res, 2022, 275: 56-62.
|
| [29] |
吕杰,程静,侯晓蓓. 生物医用材料导论[M]. 上海: 同济大学出版社, 2016.
|
| [30] |
Wei D, Huang Y, Ren P, et al. Effect of Compressive Modulus of Porous PVA Hydrogel Coating on the Preventing Adhesion of Polypropylene Mesh[J]. Macromol Biosci, 2024, 24(9): e2400112.
|
| [31] |
Wei D, Huang Y, Liang M, et al. Polypropylene composite hernia mesh with anti-adhesion layer composed of PVA hydrogel and liposomes drug delivery system[J]. Colloids Surf B Biointerfaces, 2023, 223: 113159.
|
| [32] |
Ito S, Nishiguchi A, Ichimaru H, et al. Prevention of postoperative adhesion with a colloidal gel based on decyl group-modified Alaska pollock gelatin microparticles[J]. Acta Biomater, 2022, 149: 139-149.
|
| [33] |
Jiao Y, Li C, Li S, et al. Hernia Mesh with Biomechanical and Mesh-Tissue Interface Dual Compliance for Scarless Abdominal Wall Reconstruction[J]. Advanced functional materials, 2023, 33(48): 2305714. 1-2305714. 13.
|
| [34] |
Sher W, Pollack D, Paulides CA, et al. Repair of abdominal wall defects: Gore-Tex vs. Marlex graft[J]. Am Surg, 1980, 46(11): 618-623.
|
| [35] |
Liu Z, Zhu X, Tang R. Electrospun Scaffold with Sustained Antibacterial and Tissue-Matched Mechanical Properties for Potential Application as Functional Mesh[J]. Int J Nanomedicine, 2020, 15: 4991-5004.
|
| [36] |
Hu J, Chen G, Wang G. A Trilayer Dressing with Self-Pumping and pH Monitoring Properties for Promoting Abdominal Wall Defect Repair[J]. Nanomaterials(Basel), 2022, 12(16): 2802.
|
| [37] |
Jain A, Bansal KK, Tiwari A, et al. Role of Polymers in 3D Printing Technology for Drug Delivery-An Overview[J]. Curr Pharm Des, 2018, 24(42): 4979-4990.
|
| [38] |
Beg S, Almalki WH, Malik A, et al. 3D printing for drug delivery and biomedical applications[J]. Drug Discov Today, 2020, 25(9): 1668-1681.
|
| [39] |
Hu Q, Wu J, Zhang H, et al. Designing Double-Layer Multimaterial Composite Patch Scaffold with Adhesion Resistance for Hernia Repair[J]. Macromol Biosci, 2022, 22(6): e2100510.
|
| [40] |
Yang Z, Song Z, Nie X, et al. A smart scaffold composed of three-dimensional printing and electrospinning techniques and its application in rat abdominal wall defects[J]. Stem Cell Res Ther, 2020, 11(1): 533.
|
| [41] |
许伟,曹道成,孙畅,等. 不同补片用于腹股沟疝腹腔镜手术中的安全性及对患者功能康复的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(4): 423-427.
|
| [42] |
Yu S, Ma P. Mechanical properties of warp-knitted hernia repair mesh with various boundary conditions[J]. J Mech Behav Biomed Mater, 2021, 114: 104192.
|
| [43] |
Weyhe D, Cobb W, Lecuivre J, et al. Large pore size and controlled mesh elongation are relevant predictors for mesh integration quality and low shrinkage--Systematic analysis of key parameters of meshes in a novel minipig hernia model[J]. Int J Surg, 2015, 22: 46-53.
|
| [44] |
乔燕莎,毛迎,徐丹瑶,等. 用于应对疝修补术后并发症的经编补片研究进展[J]. 纺织学报, 2022, 43(3): 1-7.
|
| [45] |
耿钊宁,殷东明,毛琳,等. 疝补片的微观结构和力学性能研究[J]. 国际生物医学工程杂志, 2023, (4): 300-305.
|
| [46] |
Yang H, Xiong Y, Chen J, et al. Study of mesh infection management following inguinal hernioplasty with an analysis of risk factors: a 10-year experience[J]. Hernia, 2020, 24(2): 301-305.
|
| [47] |
Luo Y, Wang C. The clinical characteristics and treatment of mesh infection after laparoscopic inguinal hernia repair: Report of two cases and literature review[J]. Asian J Surg, 2021, 44(11): 1449-1452.
|
| [48] |
Ceci F, D'Amore L, Grimaldi MR, et al. Re-do surgery after prosthetic abdominal wall repair: intraoperative findings of mesh-related complications[J]. Hernia, 2021, 25(2): 435-440.
|
| [49] |
Kordzadeh A, Liu MO, Jayanthi NV. Male infertility following inguinal hernia repair: a systematic review and pooled analysis[J]. Hernia, 2017, 21(1): 1-7.
|