切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 139 -145. doi: 10.3877/cma.j.issn.1674-392X.2024.02.004

疝修补材料专栏

基底膜生物补片用于腹腔内修补大鼠腹壁缺损手术引导组织再生的研究
仲卫冬1, 仲洁2, 代京3, 程文悦3, 张剑3,()   
  1. 1. 214400 江苏,南通大学附属江阴医院,江阴市人民医院综合普外一科
    2. 200093 上海理工大学健康科学与工程学院;200003 上海,海军军医大学第二附属医院(上海长征医院)肛肠外科
    3. 200003 上海,海军军医大学第二附属医院(上海长征医院)肛肠外科
  • 收稿日期:2024-03-01 出版日期:2024-04-18
  • 通信作者: 张剑
  • 基金资助:
    国防科技卓越青年科学基金(2019-JCJQ-ZQ-002); 国防科技基础加强计划(2019-JCJQ-JJ-069)

Study of tissue regeneration induced by basement membrane biologic mesh in IPOM abdominal wall defect repair in rats

Weidong Zhong1, Jie Zhong2, Jing Dai3, Wenyue Cheng3, Jian Zhang3,()   

  1. 1. First Department of General Surgery, Jiangyin City People's Hospital, Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu 214400, China
    2. University of Shanghai for Science and Technology, School of Health Science and Engineering, Shanghai 200093, China; Department of Anorectal Surgery, the Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
    3. Department of Anorectal Surgery, the Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
  • Received:2024-03-01 Published:2024-04-18
  • Corresponding author: Jian Zhang
引用本文:

仲卫冬, 仲洁, 代京, 程文悦, 张剑. 基底膜生物补片用于腹腔内修补大鼠腹壁缺损手术引导组织再生的研究[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 139-145.

Weidong Zhong, Jie Zhong, Jing Dai, Wenyue Cheng, Jian Zhang. Study of tissue regeneration induced by basement membrane biologic mesh in IPOM abdominal wall defect repair in rats[J]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2024, 18(02): 139-145.

目的

观察研究基底膜生物补片应用于腹腔内修补(IPOM)大鼠腹壁部分层次缺损手术引导腹壁组织再生的过程。

方法

选取21只健康大鼠,建立腹壁部分层次缺损模型。3只作为对照组观察造模效果;18只在造模后,分别用4层和12层基底膜补片进行修补,每组各9只,于术后2、3、4周各取3只大鼠处死取其修复区及其周围组织进行观察,通过大体观察、组织病理染色、新生血管标记和间皮细胞免疫荧光标记,观察研究生物补片在修复早期引导腹膜和组织再生的基本过程和机制。

结果

补片植入术后2周的大体观察和新生血管标记结果表明基底膜生物补片显著促进组织的血管化,新生血管从补片网孔处向周围蔓延发散形成血供网络;HE和马松染色表明补片腹壁侧和腹腔侧有明显组织再生,新生组织从补片网孔处向周围蔓延,覆盖、包裹补片;间皮细胞免疫荧光标记表明,在腹腔侧新生组织表面形成扁平的连续间皮细胞层,即腹膜再生。

结论

IPOM腹壁修复中,基底膜生物补片在早期可以引导组织和腹膜再生,新生组织和血管通过网孔从腹壁侧向腹腔侧蔓延,并在补片表面形成组织层和连续的间皮细胞层,可以有效防止补片与内脏粘连的发生。

Objective

To observe and study the process of peritoneal regeneration induced by basement membrane biologic mesh in rats with partial level defects in the abdominal wall via intraperitoneal onlay mesh (IPOM).

Methods

Twenty-one healthy rats were selected for the model construction of partial-level defects of the abdominal wall. After modeling, three rats were used as a control group to observe the modeling effect. Eighteen rats were repaired with 4-layer and 12-layer basement membrane biologic mesh, 9 rats in each group. At 2, 3 and 4 weeks postoperatively, three rats were killed to obtain and observe the repair area and its surrounding tissues. The peritoneal reconstruction and tissue repair process in early stage were evaluated by gross observation, histopathological staining, neovascularization labeling, and immunofluorescence labeling of mesothelial cells.

Results

Gross observation and neovascularization labeling two weeks after implantation showed that basement membrane biologic mesh could promote tissue vascularization. The neovascularization spread from the pore of mesh to the surrounding areas as blood supply. HE and Masson staining demonstrated significant tissue regeneration on the ventral wall side and peritoneal side of the mesh, with new tissue spreading peripherally from the mesh, and gradually cover and wrap the mesh. Immunofluorescence labeling of mesothelial cells demonstrated the formation of a flat, continuous layer of mesothelial cells on the surface of the new tissue on the peritoneal side, that is peritoneal regeneration.

Conclusion

During IPOM abdominal wall repair, the basement membrane biologic mesh can guide tissue regeneration and peritoneal reconstruction at an early stage. The new tissue spreads from the abdominal wall side to the abdominal cavity side through the mesh pores. Tissue layer and a continuous mesothelial cell layer was formed on the surface of the biologic mesh, effectively preventing the occurrence of adhesion of the mesh to the internal organs.

图1 大鼠腹壁缺损造模以及4层和12层基底膜生物补片植入腹腔后不同时间的大体观察注:1A大鼠腹壁缺损造模及造模后腹腔内的大体观察(1Aⅰ造模时;1Aⅱ造模后2周)。1B 4层基底膜生物补片网孔处的血管和组织再生(1Bⅰ植入2周;1Bⅱ植入3周;1Bⅲ植入4周)。1C 12层基底膜生物补片网孔处的血管和组织再生(1Cⅰ植入2周;1Cⅱ植入3周;1Cⅲ植入4周)。
图2 基底膜补片植入腹壁缺损大鼠腹腔后组织的新生血管免疫组化标记(CD31+)注:黑色箭头指示为新生血管,黄色虚线范围为补片。2A、2B免疫组化大视野图片。2C腹腔侧新生组织和血管。2D腹壁侧新生组织和血管。
图3 基底膜补片植入腹壁缺损大鼠腹腔后组织的HE和Masson染色注:黄色虚线范围为补片。3A补片网孔周围的HE染色图片(3Aⅰ)和放大图(3Aⅱ),黑色箭头指示为新生组织扩散方向。3B补片网孔远端的HE染色图片(3Bⅰ)和放大图(3Bⅱ)。3C补片网孔远端的Masson染色图片(3Cⅰ)和放大图(3Cⅱ)。
图4 基底膜补片植入腹壁缺损大鼠腹腔后4周组织的HE染色注:部细胞从补片表面向补片内部浸润,HE染色图片(4A)和放大图(4B)。
图5 基底膜补片植入腹壁缺损大鼠腹腔后补片表面的新生组织和间皮细胞标记荧光图注:5A组织切片免疫荧光图片(5Aⅰ)和放大图(5Aⅱ),绿色为间皮细胞(Pan-CK),蓝色为细胞核(DAPI)。5B激光共聚焦扫描电镜对补片表面细胞标记的z轴层扫平面图(5Bⅰ)和三维重构截面图(5Bⅱ),绿色为间皮细胞(Pan-CK),红色为鬼比环肽标记的细胞骨架肌动蛋白(F-actin)。
[1]
Hodde J. Extracellular matrix as a bioactive material for soft tissue reconstruction[J]. ANZ J Surg, 2006, 76(12): 1096-1100.
[2]
Penttinen R, Grönroos JM. Mesh repair of common abdominal hernias: a review on experimental and clinical studies[J]. Hernia, 2008, 12(4): 337-344.
[3]
中华医学会外科学分会疝与腹壁外科学组. 腹腔内补片修补术中国专家共识(2022版)[J]. 中国实用外科杂志, 2022, 42(7): 721-729.
[4]
Schmidt A, Taylor D. Erosion of soft tissue by polypropylene mesh products[J]. J Mech Behav Biomed Mater, 2021, 115: 104281.
[5]
Zogbi L, Trindade EN, Trindade MR. Comparative study of shrinkage, inflammatory response and fibroplasia in heavyweight and lightweight meshes[J]. Hernia, 2013, 17(6): 765-772.
[6]
Costa A, Adamo S, Gossetti F, et al. Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application?[J]. Materials(Basel), 2019, 12(15): 2375.
[7]
Liang W, He W, Huang R, et al. Peritoneum-Inspired Janus Porous Hydrogel with Anti-Deformation, Anti-Adhesion, and Pro-Healing Characteristics for Abdominal Wall Defect Treatment[J]. Adv Mater, 2022, 34(15): e2108992.
[8]
Abrams GA, Murphy CJ, Wang ZY, et al. Ultrastructural basement membrane topography of the bladder epithelium[J]. Urol Res, 2003, 31(5): 341-346.
[9]
Gaharwar AK, Singh I, Khademhosseini A. Engineered biomaterials for in situ tissue regeneration[J]. Nat Rev Mater, 2020, 5: 686-705.
[10]
Rastegarpour A, Cheung M, Vardhan M, et al. Surgical mesh for ventral incisional hernia repairs: Understanding mesh design[J]. Plast Surg(Oakv), 2016, 24(1): 41-50.
[11]
Gaharwar AK, Singh I, Khademhossein A. Engineered biomaterials for in situ tissue regeneration[J]. Nat Rev Mater, 2020, 5: 686-705.
[12]
Cramer M, Chang J, Li H, et al. Tissue response, macrophage phenotype, and intrinsic calcification induced by cardiovascular biomaterials: Can clinical regenerative potential be predicted in a rat subcutaneous implant model?[J]. J Biomed Mater Res A, 2022, 110(2): 245-256.
[13]
Tang X, Yang F, Chu G, et al. Characterizing the inherent activity of urinary bladder matrix for adhesion, migration, and activation of fibroblasts as compared with collagen-based synthetic scaffold[J]. J Biomater Appl, 2023, 37(8): 1446-1457.
[14]
Kruegel J, Miosge N. Basement membrane components are key players in specialized extracellular matrices[J]. Cell Mol Life Sci, 2010, 67(17): 2879-2895.
[15]
Glentis A, Gurchenkov V, Matic Vignjevic D. Assembly, heterogeneity, and breaching of the basement membranes[J]. Cell Adh Migr, 2014, 8(3): 236-245.
[16]
Brown B, Lindberg K, Reing J, et al. The basement membrane component of biologic scaffolds derived from extracellular matrix[J]. Tissue Eng, 2006, 12(3): 519-526.
[17]
Cunnane EM, Davis NF, Cunnane CV, et al. Mechanical, compositional and morphological characterisation of the human male urethra for the development of a biomimetic tissue engineered urethral scaffold[J]. Biomaterials, 2021, 269: 120651.
[18]
Leclech C, Natale CF, Barakat AI. The basement membrane as a structured surface - role in vascular health and disease[J]. J Cell Sci, 2020, 133(18): jcs239889.
[19]
Osborn SL, Mah LW, Ely EV, et al. Autologous regeneration of blood vessels in urinary bladder matrices provides early perfusion after transplant to the bladder[J]. J Tissue Eng Regen Med, 2022, 16(8): 718-731.
[20]
Wang Y, Zhang K, Yang J, et al. Outcome of a novel porcine-derived UBM/SIS composite biological mesh in a rabbit vaginal defect model[J]. Int Urogynecol J, 2023, 34(7): 1501-1511.
[21]
Zhang H, Zhang Q, Zhang J, et al. Urinary bladder matrix scaffolds improve endometrial regeneration in a rat model of intrauterine adhesions[J]. Biomater Sci, 2020, 8(3): 988-996.
[22]
Brown BN, Londono R, Tottey S, et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials[J]. Acta Biomater, 2012, 8(3): 978-987.
[23]
Yi S, Ding F, Gong L, et al. Extracellular Matrix Scaffolds for Tissue Engineering and Regenerative Medicine[J]. Curr Stem Cell Res Ther, 2017, 12(3): 233-246.
[24]
Wang X, Chung L, Hooks J, et al. Type 2 immunity induced by bladder extracellular matrix enhances corneal wound healing[J]. Sci Adv, 2021, 7(16): eabe2635.
[25]
Buţureanu SA, Buţureanu TA. Pathophysiology of adhesions[J]. Chirurgia(Bucur), 2014, 109(3): 293-298.
[26]
Liang W, He W, Huang R, et al. Peritoneum-Inspired Janus Porous Hydrogel with Anti-Deformation, Anti-Adhesion, and Pro-Healing Characteristics for Abdominal Wall Defect Treatment[J]. Adv Mater, 2022, 34(15): e2108992.
[1] 薛昶, 王翔, 冯利, 金鑫, 王治伟. 生物补片盆底修补术和直接缝合术在低位直肠癌患者盆底重建中的应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 327-329.
[2] 曹迪, 张玉茹. 经腹腔镜生物补片修补直肠癌根治术后盆底疝1例[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 115-116.
[3] 田文, 杨晓冬. 腹腔镜腹股沟疝修补术式选择及注意事项[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 595-597.
[4] 李绍杰, 谢奇峰, 李绍春, 杨子昂, 黄永刚, 陈吉彩, 杜舟, 王平, 张剑, 唐健雄. 复合基底膜生物补片应用于腹股沟疝Lichtenstein修补术的随机、对照、多中心临床研究[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 132-138.
[5] 李宝山, 王荫龙, 张新, 胡巍, 满艺. 腹腔镜下基于疝环缝合的生物补片经腹腹膜前修补术治疗成人腹股沟疝疗效分析[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(01): 93-96.
[6] 叶晋生, 路夷平, 梁燕凯, 于淼, 冀祯, 贺志坚, 张洪海, 王洁. 腹腔镜下应用生物补片修补直肠术后盆底缺损的疗效[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 688-691.
[7] 李义亮, 买买提·依斯热依力, 王永康, 王志, 赛甫丁·艾比布拉, 李赞林, 克力木·阿不都热依木. 聚丙烯和生物补片对腹壁疝大鼠腹横筋膜组织氧化应激、MMPs及TIMPs的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 125-129.
[8] 宁鹏涛, 俞德梁, 高博欣, 徐蕾, 刘小南. 基于日间管理模式的高龄腹股沟疝Lichtenstein手术25例分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 186-190.
[9] 李宝山, 满艺, 张新, 胡巍, 谢加东, 黄皇, 王荫龙. 生物补片在青少年腹股沟疝经腹腹膜前修补术中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(01): 20-23.
[10] 刘静, 劳金涛, 申英末. 新型非交联与交联生物补片在青少年和青壮年腹股沟疝术中对比研究[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(06): 672-676.
[11] 董国强, 元海成, 张兴洲, 张楠. 生物补片与自固定补片在腹股沟疝修补术中的临床对照研究[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(05): 540-543.
[12] 徐睿, 彭露, 周俊杰, 钱群. 国产生物补片与聚丙烯补片在日间腹股沟斜疝Lichtenstein修补术中的疗效对比[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(05): 535-539.
[13] 栾鹏博, 吕亮宏, 余翔, 穆林松, 吕忠船. 生物补片在腹腔镜经腹腹膜前腹股沟疝修补术中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(05): 531-534.
[14] 吴明东, 刘俊杰, 喻武, 张明逸, 周好男, 冉坤, 孙建明, 唐博, 陈以宽. 生物补片应用于腹腔镜全腹膜外成人腹股沟疝修补的疗效分析[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(05): 525-530.
[15] 黄香港, 赵怡欣, 徐易敏, 邵翔宇, 程滔, 嵇振岭, 宋兴超, 李俊生. 生物补片在腹腔镜食管裂孔疝修补术中的应用[J]. 中华胃食管反流病电子杂志, 2023, 10(04): 176-180.
阅读次数
全文


摘要