切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 146 -153. doi: 10.3877/cma.j.issn.1674-392X.2024.02.005

疝修补材料专栏

体外和比格犬体内评价腹内压致生物补片分层及疝复发风险的研究
王虞鹭1, 代京1, 程文悦1, 徐隽雅1, 张剑1,()   
  1. 1. 200003 上海,海军军医大学第二附属医院(上海长征医院)肛肠外科
  • 收稿日期:2024-03-01 出版日期:2024-04-18
  • 通信作者: 张剑
  • 基金资助:
    国防科技卓越青年科学基金(2019-JCJQ-ZQ-002); 国防科技基础加强计划(2019-JCJQ-JJ-069)

Delamination of biologic mesh due to intra-abdominal pressure and risk assessment of hernia recurrence in vitro and in Beagle dog model

Yulu Wang1, Jing Dai1, Wenyue Cheng1, Junya Xu1, Jian Zhang1,()   

  1. 1. Department of Anorectal Surgery, the Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200003, China
  • Received:2024-03-01 Published:2024-04-18
  • Corresponding author: Jian Zhang
引用本文:

王虞鹭, 代京, 程文悦, 徐隽雅, 张剑. 体外和比格犬体内评价腹内压致生物补片分层及疝复发风险的研究[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 146-153.

Yulu Wang, Jing Dai, Wenyue Cheng, Junya Xu, Jian Zhang. Delamination of biologic mesh due to intra-abdominal pressure and risk assessment of hernia recurrence in vitro and in Beagle dog model[J]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2024, 18(02): 146-153.

目的

评估模拟腹内压力对生物疝修补补片分层性能的影响及全层腹壁肌缺损比格犬体内植入修补术后的疝复发风险。

方法

选择两种市售生物疝修补补片作为样本[基底膜与小肠黏膜下层复合细胞外基质补片(BM/SIS复合补片)和小肠黏膜下层补片(SIS补片)],模拟腹腔内生物补片持续受力的环境,在生理盐水中分别对补片进行20 000次循环机械拉伸(拉伸率设置为:±10%和±20%),以研究力学加载对补片分层性能的影响。选择4只比格犬,切除整个腹壁组织进行全层腹壁肌缺损造模,并采用不同(BM/SIS、SIS)生物补片进行修补,术后比格犬均饲养2周后处死,取出补片以及周围组织,观察补片植入动物体内后的分层和疝复发现象。

结果

经过20 000次循环机械拉伸后,BM/SIS复合补片未见明显分层和厚度变化;全层腹壁肌缺损比格犬体内植入后组织修复效果较好,未见疝复发。SIS补片在±10%循环机械拉伸下层间距增加,厚度显著增加(P=0.007);在±20%的循环机械拉伸下分层明显,补片厚度显著增加(P=0.001);动物体内植入2周后,可见补片明显分层,与组织融合较差。

结论

BM/SIS生物补片层间结构稳定,不易发生分层,补片强度稳定,可以有效防止补片分层造成的疝复发风险。

Objective

To evaluate the effect of simulated intra-abdominal pressure on the delamination performance of biological mesh and the risk of hernia recurrence after implantation repair in Beagle dog full-layer abdominal wall muscle defect model.

Methods

Two commercially available biological meshes were selected as samples basement membrane/small intestinal submucosa (BM /SIS) composite mesh and small intestinal submucosa (SIS) mesh. To simulate the continuous force intra-abdominal environment of the biological mesh, the meshes were mechanically stretched for 20,000 cycles (stretching rate ±10% and ±20%) in a normal saline liquid environment, to study the effect of mechanical loading on the delamination performance. Four Beagle dogs were selected and the whole abdominal wall muscle was removed to construct the full-layer abdominal wall muscle defect model. Different biological meshes (BM/SIS, SIS) were used for repair. All the Beagle dogs were fed for 2 weeks after operation and then killed. The mesh and surrounding tissues were removed, and the delamination of mesh after implantation in animals and hernia recurrence were assessed.

Results

After 20,000 cycles of mechanical stretching, the BM/SIS composite mesh did not show significant delamination and thickness change. Tissue repair after implantation in Beagle dogs with full-layer abdominal wall muscle defect had good repair effect, and no hernia recurrence was observed. The SIS mesh exhibited space increase and significant thickness change (P=0.007) under ±10% cycles of mechanical stretching, and significant and increasing thickness (P=0.001) under ±20% cycles of mechanical stretching. After 2 weeks of implantation, the SIS mesh was significantly delaminated and poorly integrated with the tissue.

Conclusion

The BM/SIS biological mesh has a stable interlayer structure, which is not easy to be delaminated. The strength of the BM/SIS mesh is stable, which can effectively prevent the risk of hernia recurrence caused by the delamination of the mesh.

图1 BM/SIS复合补片和SIS补片的力学性能分析注:1A补片水化后的应力-应变曲线,黑色箭头对应为拉伸过程中SIS补片逐层断裂导致的应力下降。1B BM/SIS复合补片和SIS补片水化后20%拉伸下的应力-应变循环拉伸曲线。
图2 BM/SIS复合补片和SIS补片的循环机械拉伸和厚度变化统计注:2A两种补片在生理盐水中进行±10%和±20%的循环机械拉伸图片和20 000次循环拉伸后补片的形态变化。2B两种补片在20 000次循环拉伸后补片的厚度变化图片和统计结果。**P<0.01,***P<0.001,ns差异无统计学意义。
图3 BM/SIS复合补片和SIS补片在20 000次循环机械拉伸后补片的扫描电子显微镜图片注:从左至右分别为补片干态、水化后、水化后±10%拉伸、水化后±20%拉伸的样品。
图4 比格犬腹壁肌肉缺损模型BM/SIS复合补片和SIS补片植入2周后的HE染色补片分层现象和组织再生观察注:黑色箭头指示为补片结构和新生组织。4A BM/SIS(4Aⅰ)和SIS(4Aⅱ)补片植入术后2周中央区HE染色结果;4B BM/SIS(4Bⅰ)和SIS(4Bⅱ)补片植入术后2周交界区HE染色结果。
[9]
Le Huu Nho R, Mege D, Ouaissi M, et al. Incidence and prevention of ventral incisional hernia[J]. J Visc Surg, 2012, 149 (5 Suppl): e3-14.
[10]
Forstemann T, Trzewik J, Holste J, et al. Forces and deformations of the abdominal wall – a mechanical and geometrical approach to the linea alba[J]. J Biomech, 2011, 44(4): 600-606.
[11]
Bittner R, Bain K, Bansal VK, et al. Update of Guidelines for laparoscopic treatment of ventral and incisional abdominal wall hernias(International Endohernia Society(IEHS))-Part A[J]. Surg Endosc, 2019, 33(10): 3069-3139.
[12]
《复杂腹壁疝微共识:巨大切口疝》编审委员会, 《中华疝和腹壁外科杂志(电子版)》编辑委员会, 全国卫生产业企业管理协会疝和腹壁外科产业及临床研究分会复杂腹壁疝及减重专家组. 复杂腹壁疝微共识:巨大切口疝[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(4): 369-373.
[13]
中华医学会外科学分会疝与腹壁外科学组, 中国医疗保健国际交流促进会临床实用技术分会腹壁修复与重建外科学组. 腹壁缺损修复与重建中国专家共识(2019版)[J]. 中国实用外科杂志, 2019, 39(2): 101-109.
[14]
Peralta R, Latifi R. Long-term outcomes of abdominal wall reconstruction. what are the real numbers?[J]. World J Surg, 2012, 36(3): 534-538.
[15]
Bellows CF, Alder A, Helton WS. Abdominal wall reconstruction using biological tissue grafts: Present status and future opportunities[J]. Expert Rev Med Devices, 2006, 3(5): 657-675.
[16]
El-Gazzaz G, Erem HH, Aytac E, et al. Risk of infection and hernia recurrence for patients undergoing ventral hernia repair with non-absorbable or biological mesh during open bowel procedures[J]. Tech Coloproctol, 2013, 17(3): 315-320.
[17]
Noro J, Vilaça-Faria H, Reis RL, et al. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application[J]. Bioact Mater, 2024, 34: 494-519.
[18]
Costa A, Naranjo JD, Turner NJ, et al. Mechanical strength vs. degradation of a biologically-derived surgical mesh over time in a rodent full thickness abdominal wall defect[J]. Biomaterials, 2016, 108: 81-90.
[19]
Bilsel Y, Abci I. The search for ideal hernia repair; mesh materials and types[J]. Int J Surg, 2012, 10(6): 317-321.
[20]
Pott PP, Schwarz ML, Gundling R, et al. Mechanical properties of mesh materials used for hernia repair and soft tissue augmentation[J]. PLoS One, 2012, 7(10): e46978.
[21]
Petro CC, Nahabet EH, Criss CN, et al. Central failures of lightweight monofilament polyester mesh causing hernia recurrence: A cautionary note[J]. Hernia, 2015, 19(1): 155-159.
[22]
杨建军, 宋致成, 杨董超, 等. 正确认识桥接修复术在腹壁缺损修复与重建中应用价值[J]. 中国实用外科杂志, 2021, 41(4): 394-397.
[23]
顾岩, 杨建军, 宋致成, 等. 腹壁缺损修复重建材料的选择与未来发展[J]. 上海医学, 2022, 45(4): 216-220.
[24]
Symeonidis D, Efthimou M, Koukoulis G, et al. Is it really worth it? Reply to: Selective use of bioabsorbable Gore BIO-A plug and patch for groin hernia repair. Negro P, Campanelli G, Ipponi PL, Gossetti F, Dassatti MR, Manto O, D'Amore L. Hernia. 2013, 17(6):795-6[J]. Hernia, 2015, 19(3):533-534.
[1]
Zhou H, Shen Y, Zhang Z, et al. Comparison of outcomes of ventral hernia repair using different meshes: a systematic review and network meta-analysis[J]. Hernia, 2022, 26(6): 1561-1571.
[2]
Ho CH, Liao PW, Yang SS, et al. The use of porcine small intestine submucosa implants might be associated with a high recurrence rate following laparoscopic herniorrhaphy[J]. J Formos Med Assoc, 2015, 114(3): 216-220.
[3]
Beale EW, Hoxworth RE, Livingston EH, et al. The role of biologic mesh in abdominal wall reconstruction: a systematic review of the current literature[J]. Am J Surg, 2012, 204(4): 510-517.
[4]
Heinrich MA, Mangia M, Prakash J. Impact of endotoxins on bioengineered tissues and models[J]. Trends Biotechnol, 2022, 40(5): 532-534.
[5]
Valerio IL, Campbell P, Sabino J, et al. The use of urinary bladder matrix in the treatment of trauma and combat casualty wound care[J]. Regen Med, 2015, 10(5): 611-622.
[6]
Lecheminant J, Field C. Porcine urinary bladder matrix: a retrospective study and establishment of protocol[J]. J Wound Care, 2012, 21(10): 476-482.
[7]
Piterina AV, Callanan A, Davis L, et al. Extracellular matrices as advanced scaffolds for vascular tissue engineering[J]. Biomed Mater Eng, 2009, 19(4-5): 333-348.
[8]
Rastegarpour A, Cheung M, Vardhan M, et al. Surgical mesh for ventral incisional hernia repairs: Understanding mesh design[J]. Plast Surg(Oakv), 2016, 24(1): 41-50.
[25]
Butler CE, Burns NK, Campbell KT, et al. Comparison of cross-linked and non-cross-linked porcine acellular dermal matrices for ventral hernia repair[J]. J Am Coll Surg, 2010, 211: 368-376.
[26]
Klosterhalfen B, Hermanns B, Rosch R, et al. Biological response to mesh[J]. Eur Surg, 2003, 35(1): 16-20.
[27]
Pozzi A, Yurchenco PD, Iozzo RV. The nature and biology of basement membranes[J]. Matrix Biol, 2017, 57-58: 1-11.
[1] 李绍杰, 唐健雄, 黄磊, 蔡昭, 胡星辰, 孟云潇, 李绍春. 腹壁切口疝修补术后腹壁膨出相关因素研究[J]. 中华疝和腹壁外科杂志(电子版), 2019, 13(05): 398-403.
阅读次数
全文


摘要