切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2019, Vol. 13 ›› Issue (03) : 198 -203. doi: 10.3877/cma.j.issn.1674-392X.2019.03.002

所属专题: 文献

论著

不同组织来源的生物补片修补腹壁肌部分层次缺损的研究
程文悦1, 陈金水2, 刘耀婷2, 赵美彪2, 王强1, 张剑1,()   
  1. 1. 200070 上海市静安区闸北中心医院再生医学实验室
    2. 200003 上海,海军军医大学长征医院普通外科
  • 收稿日期:2018-12-28 出版日期:2019-06-18
  • 通信作者: 张剑
  • 基金资助:
    国家自然科学基金(81601237); 上海市自然科学基金(16ZR1433400); 上海市科委国际合作项目(16410724400); 上海市卫计委科研重点项目(201540388); 上海市科技支撑项目(16441904800)

Experimental assessment of tissue repair of basement membrane in partial thickness defect in abdominal wall of rats

Wenyue Cheng1, Jinshui Chen2, Yaoting Liu2, Meibiao Zhao2, Qiang Wang1, Jian Zhang1,()   

  1. 1. Department of Regenerative Medicine, Shanghai Jingan District Zhabei Central Hospital, Shanghai 200070, China
    2. Department of General Surgery, Shanghai ChangZheng Hospital, the Second Military Medical University, Shanghai 200003, China
  • Received:2018-12-28 Published:2019-06-18
  • Corresponding author: Jian Zhang
引用本文:

程文悦, 陈金水, 刘耀婷, 赵美彪, 王强, 张剑. 不同组织来源的生物补片修补腹壁肌部分层次缺损的研究[J]. 中华疝和腹壁外科杂志(电子版), 2019, 13(03): 198-203.

Wenyue Cheng, Jinshui Chen, Yaoting Liu, Meibiao Zhao, Qiang Wang, Jian Zhang. Experimental assessment of tissue repair of basement membrane in partial thickness defect in abdominal wall of rats[J]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2019, 13(03): 198-203.

目的

探讨不同组织来源的生物补片体内组织重塑的差异,并提供信息供临床选择生物补片时参考。

方法

选取健康SD大鼠,随机分组,每组10处缺损,建腹壁肌部分层次缺损模型并以基底膜(basement membrane,BM)/小肠黏膜下层(small intestine submucosa,SIS)复合细胞外基质补片、SIS补片、真皮补片和心包补片修补,设立未修补组为空白对照。术后2、4、8、16周评价修复区血清肿发生、皱缩率、植入降解比例,取修复区组织做组织学切片分析补片内组织长入、新生血管化、周围组织包裹情况。

结果

实验期内,BM/SIS复合细胞外基质补片未发生血清肿,基本维持植入面积,术后4周再生高度有序的新生胶原替代缺损区域,术后8周补片降解。术后2周,SIS补片的血清肿发生率为65%,修复区早期大量炎性细胞浸润,再生胶原组织有序性较差,术后8周补片降解,术后16周皱缩率为-52.0%±9.8%。50%的真皮补片细胞浸润补片中央,完全降解。其余真皮补片出现纤维囊包裹,细胞仅浸润交界区,修复区显著扩张,实验期内无降解。心包补片仅少量细胞浸润交界区,无组织长入,术后16周皱缩率为-29.5%±14.0%,出现致密纤维囊包裹,实验期内无降解。

结论

与SIS补片、心包补片和真皮补片相比,BM/SIS复合细胞外基质补片具备优异的组织修补和再生疗效。

Objective

To evaluate the therapeutic effects of biological grafts derived from different tissue, to provide reference information for the clinical choice of biological grafts.

Methods

Healthy SD rats were randomly divided into 5 groups (n=10). Bilateral partial thickness defect in abdominal wall of rats were created and repaired with either basement membrane (BM)/small intestine submucosa (SIS) composite extracellular matrix (ECM) graft, SIS, dermis or pericardium, while untreated defects were served as control. Animals were sacrificed at 2, 4, 8 and 16 weeks after surgery, the incidence of seroma, shrinkage in repair area and degradation of implants were recorded. The repaired abdominal walls were harvested for histological evaluation to observe cell ingrowth, neovascularization, and fibrous encapsulation.

Results

No seroma formation was observed in BM/SIS composite ECM graft repaired samples, and the samples replaced with dense and well-organized collagen fibers with mainly initial dimensions at 4 weeks post-surgery, degraded at 8 weeks post-surgery. There still presents massive inflammatory cells infiltration in SIS repaired area at 4 weeks post-surgery. At 8 weeks post-surgery, seroma incidence in SIS repaired samples was 65% and SIS was degraded. SIS had reconstructed tissue defects with a notable shrinkage rate of -52.0%±9.8%. 50% of dermis repaired area was infiltrated by cells and fully degraded. Fibrous encapsulation was formed in other dermis repaired area and cells were only infiltrated in the interface area. Significant enlargement compared with original implant area and no obvious degradation were observed. During the experimental period, scarcely any cells infiltrated the scaffold of pericardium with a shrinkage rate of -29.5%±14.0% at 16 weeks post-surgery. No degradation was observed and fibrous encapsulations were formed in pericardium repaired samples.

Conclusion

BM composite graft has shown a better tissue regeneration compared with SIS, dermis and pericardium.

表1 大鼠术后2周各组补片修复区大体观察[处(%)]
表2 大鼠术后各时间点各组补片修复区皱缩/扩张率(%,±s
图1 大鼠腹壁肌部分层次缺损模型修补及术后组织重建大体观
图2 大鼠术后2~16周修复区组织学染色结果
表3 大鼠术后各时间点真皮补片(未降解)和心包补片修复区纤维囊包裹厚度(μm,±s
[15]
张剑. 非交联生物补片临床相关事项分析[J]. 手术, 2016, 1(2): 26-29.
[1]
Londono R, Badylak SF. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling[J]. Ann Biomed Eng, 2015, 43(3): 577-592.
[2]
Zhang J, Hu ZQ, Turner NJ, et al. Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template[J]. Biomaterials, 2016, 89: 114-126.
[3]
Beale EW, Hoxworth RE, Livingston EH, et al. The role of biologic mesh in abdominal wall reconstruction: a systematic review of the current literature[J]. Am J Surg, 2012, 204(4): 510-517.
[4]
Gupta A, Zahriya K, Mullens PL, et al. Ventral herniorrhaphy: experience with two different biosynthetic mesh materials, Surgisis and Alloderm[J]. Hernia, 2006, 10(5): 419-425.
[5]
Akyol C, Kocaay F, Orozakunov E, et al. Outcome of the patients with chronic mesh infection following open inguinal hernia repair[J]. J Korean Surg Soc, 2013, 84(5): 287-291.
[6]
陈富强,申英末. 生物补片在疝和腹壁外科的应用及研究进展[J/CD]. 中华疝和腹壁外科杂志(电子版), 2016, 10(5): 364-368.
[7]
Sadtler K, Sommerfeld SD, Wolf MT, et al. Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury[J]. Semin Immunol, 2017, 29: 14-23.
[8]
Jacobs HN, Rathod S, Wolf MT, et al. Intra-articular injection of urinary bladder matrix reduces osteoarthritis development[J]. AAPS J, 2017, 19(1): 141-149.
[9]
Turner NJ, Badylak SF. The use of biologic scaffolds in the treatment of chronic nonhealing wounds[J]. Adv Wound Care(New Rochelle), 2015, 4(8): 490-500.
[10]
Engvall E. Structure and function of basement membranes[J]. Int J Dev Biol, 1995, 39(5): 781-787.
[11]
Marçal H, Ahmed T, Badylak SF, et al. A comprehensive protein expression profile of extracellular matrix biomaterial derived from porcine urinary bladder[J]. Regen Med, 2012, 7(2): 159-166.
[12]
Ko JH, Salvay DM, Paul BC, et al. Soft polypropylene mesh, but not cadaveric dermis, significantly improves outcomes in midline hernia repairs using the components separation technique[J]. Plast Reconstr Surg, 2009, 124(3): 836-847.
[13]
马颂章. 疝和腹壁外科生物学类修补材料再认识[J]. 中国实用外科杂志, 2015, 35(11): 1153-1156.
[14]
Delgado LM, Bayon Y, Pandit A, et al. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices[J]. Tissue Eng Part B Rev, 2015, 21(3): 298-313.
[1] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[2] 刘琰. 真皮基质在烧伤创面修复中的应用[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 458-458.
[3] 曹迪, 张玉茹. 经腹腔镜生物补片修补直肠癌根治术后盆底疝1例[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 115-116.
[4] 叶晋生, 路夷平, 梁燕凯, 于淼, 冀祯, 贺志坚, 张洪海, 王洁. 腹腔镜下应用生物补片修补直肠术后盆底缺损的疗效[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 688-691.
[5] 李义亮, 买买提·依斯热依力, 王永康, 王志, 赛甫丁·艾比布拉, 李赞林, 克力木·阿不都热依木. 聚丙烯和生物补片对腹壁疝大鼠腹横筋膜组织氧化应激、MMPs及TIMPs的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 125-129.
[6] 宁鹏涛, 俞德梁, 高博欣, 徐蕾, 刘小南. 基于日间管理模式的高龄腹股沟疝Lichtenstein手术25例分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 186-190.
[7] 李宝山, 满艺, 张新, 胡巍, 谢加东, 黄皇, 王荫龙. 生物补片在青少年腹股沟疝经腹腹膜前修补术中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(01): 20-23.
[8] 刘静, 劳金涛, 申英末. 新型非交联与交联生物补片在青少年和青壮年腹股沟疝术中对比研究[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(06): 672-676.
[9] 董国强, 元海成, 张兴洲, 张楠. 生物补片与自固定补片在腹股沟疝修补术中的临床对照研究[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(05): 540-543.
[10] 徐睿, 彭露, 周俊杰, 钱群. 国产生物补片与聚丙烯补片在日间腹股沟斜疝Lichtenstein修补术中的疗效对比[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(05): 535-539.
[11] 栾鹏博, 吕亮宏, 余翔, 穆林松, 吕忠船. 生物补片在腹腔镜经腹腹膜前腹股沟疝修补术中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(05): 531-534.
[12] 吴明东, 刘俊杰, 喻武, 张明逸, 周好男, 冉坤, 孙建明, 唐博, 陈以宽. 生物补片应用于腹腔镜全腹膜外成人腹股沟疝修补的疗效分析[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(05): 525-530.
[13] 石美涵, 周诚, 杨蕴钊, 白雪源. 线性多肽α3127-148诱导抗肾小球基底膜肾炎大鼠模型的建立[J]. 中华肾病研究电子杂志, 2022, 11(01): 1-6.
[14] 陕西省抗癌协会肿瘤转移专业委员会, 陕西省抗癌协会罕见肿瘤专业委员会:恶性浆膜腔积液诊治专家联盟. 陕西省恶性浆膜腔积液诊治专家共识(2021版)[J]. 中华临床医师杂志(电子版), 2022, 16(01): 1-16.
[15] 李赞林, 李义亮, 克力木·阿不都热依. 生物补片在腹腔镜下食管裂孔疝修补术中应用中的Meta分析[J]. 中华胃食管反流病电子杂志, 2022, 09(01): 12-18.
阅读次数
全文


摘要