切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 125 -131. doi: 10.3877/cma.j.issn.1674-392X.2024.02.002

疝修补材料专栏

双面不对称补片在腹壁组织缺损修复中的应用
欧阳阳1, 于洋1, 熊闻轩2, 王辉1, 黄榕康1,()   
  1. 1. 510655 广州,中山大学附属第六医院普通外科(结直肠外科)
    2. 510006 广州,中山大学中山医学院
  • 收稿日期:2024-03-20 出版日期:2024-04-18
  • 通信作者: 黄榕康
  • 基金资助:
    国家自然科学基金(22271320); 广东省基础与应用基础研究基金(2021A1515110856); 北京白求恩公益基金会(10012)

Application of double-sided asymmetric composite meshes in abdominal wall defect repair

Yang Ouyang1, Yang Yu1, Wenxuan Xiong2, Hui Wang1, Rongkang Huang1,()   

  1. 1. Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
    2. Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510006, China
  • Received:2024-03-20 Published:2024-04-18
  • Corresponding author: Rongkang Huang
引用本文:

欧阳阳, 于洋, 熊闻轩, 王辉, 黄榕康. 双面不对称补片在腹壁组织缺损修复中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 125-131.

Yang Ouyang, Yang Yu, Wenxuan Xiong, Hui Wang, Rongkang Huang. Application of double-sided asymmetric composite meshes in abdominal wall defect repair[J/OL]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2024, 18(02): 125-131.

无张力补片修补术是腹壁缺损的首选治疗方式。然而,与单纯的腹股沟疝等腹壁缺损相比,创伤、腹壁肠造口或肿瘤切除手术等因素导致的复杂型腹壁缺损近年来日益增多,对修补材料的性能提出了更高的要求。现有商用补片在临床实践中仍面临许多亟需解决的瓶颈问题,如感染、腹腔内粘连、愈合缓慢、补片移位等,难以实现缺损组织的高效修复。本文就现有商业补片和新型双面不对称高分子补片材料进行总结和阐述并对软组织修复材料领域可能面临的挑战、机遇以及未来的研究方向进行了展望。

Tension-free mesh repair is the preferred method for treating abdominal wall defects. However, compared to simple abdominal wall defects such as inguinal hernias, complex abdominal wall defects caused by trauma, abdominal wall stoma, or tumor resection surgeries have become increasingly prevalent in recent years, and higher requirements are placed on the performance of repair materials. Commercial meshes still face many critical challenges in clinical practice, such as infections, intra-abdominal adhesions, slow healing, and mesh displacement, making it difficult to achieve efficient repair of defective tissues. This paper presents an overview of current commercial meshes and novel double-sided asymmetric composite polymer meshes, and provides a perspective on the potential challenges, opportunities, and future research directions in the field of soft tissue repair materials.

表1 不同材料对补片性能的影响
[1]
顾岩, 田文, 王平, 等. 腹壁缺损修复与重建中国专家共识(2019版)[J]. 中国实用外科杂志, 2019, 39(2): 101-109.
[2]
Akcakaya A, Aydogdu I, Citgez B. Investigation into the optimal prosthetic material for wound healing of abdominal wall defects[J]. Exp Ther Med, 2018, 15(2): 1622-1625.
[3]
Yang B, Jiang ZP, Li YR, et al. Long-term outcome for open preperitoneal mesh repair of recurrent inguinal hernia[J]. Int J Surg, 2015, 19: 134-136.
[4]
Miserez M, Jairam AP, Boersema GSA, et al. Resorbable Synthetic Meshes for Abdominal Wall Defects in Preclinical Setting: A Literature Review[J]. J Surg Res, 2019, 237: 67-75.
[5]
Domen A, Stabel C, Jawad R, et al. Postoperative ileus after laparoscopic primary and incisional abdominal hernia repair with intraperitoneal mesh (DynaMesh®-IPOM versus ParietexTM Composite): a single institution experience[J]. Langenbecks Arch Surg, 2021, 406(1): 209-218.
[6]
Kubota M, Makita N, Inoue K, et al. Laparoscopic Repair of Ureteral Diverticulum Caused by Ureterosciatic Hernia[J]. Urology, 2020, 140: e1-e3.
[7]
Liang KW, Ding CC, Li JJ, et al. A Review of Advanced Abdominal Wall Hernia Patch Materials[J]. Adv Healthc Mater, 2023, e2303506.
[8]
Zhang J, Hu ZQ, Turner NJ, et al. Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template[J]. Biomaterials, 2016, 89: 114-126.
[9]
Tang FX, Miao DT, Huang RK, et al. Double-Layer Asymmetric Porous Mesh with Dynamic Mechanical Support Properties Enables Efficient Single-Stage Repair of Contaminated Abdominal Wall Defect[J]. Adv Mater, 2024, e2307845.
[10]
Tan WP, Lavu H, Rosato EL, et al. Edoardo Bassini(1844-1924): father of modern-day hernia surgery[J]. Am Surg, 2013, 79(11): 1131-1133.
[11]
Shi YL, Su ZX, Li LP, et al. Comparing the effects of Bassini versus tension-free hernioplasty: 3 years’ follow-up[J]. Front Med China, 2010, 4(4): 463-468.
[12]
过文泰, 胡民辉, 黄榕康, 等. 疝外科材料学百年发展及未来展望 [J]. 中华胃肠外科杂志, 2018, 21 (7): 828-832.
[13]
Wolstenholme JT. Use of commercial dacron fabric in the repair of inguinal hernias and abdominal wall defects[J]. AMA Arch Surg, 1956, 73(6): 1004-1008.
[14]
Usher FC, Gannon JP. Marlex mesh, a new plastic mesh for replacing tissue defects. I. Experimental studies[J]. AMA Arch Surg, 1959, 78(1): 131-137.
[15]
于凡, 伍波, 康杰. 疝修补材料的研究进展及展望[J]. 外科理论与实践, 2022, 27(4): 375-379.
[16]
Delany HM, Porreca F, Mitsudo S, et al. Splenic capping: an experimental study of a new technique for splenorrhaphy using woven polyglycolic acid mesh[J]. Ann Surg, 1982, 196(2): 187-193.
[17]
Lamb JP, Vitale T, Kaminski DL. Comparative evaluation of synthetic meshes used for abdominal wall replacement[J]. Surgery, 1983, 93(5): 643-648.
[18]
孙立, 陈杰, 申英末, 等. 生物补片在腹股沟疝治疗中应用[J]. 中国实用外科杂志, 2017, 37(11): 1223-1227.
[19]
Itani KMF, Rosen M, Vargo D, et al. Prospective study of single-stage repair of contaminated hernias using a biologic porcine tissue matrix: the RICH Study[J]. Surgery, 2012, 152(3): 498-505.
[20]
Sakorafas GH, Halikias I, Nissotakis C, et al. Open tension free repair of inguinal hernias; the Lichtenstein technique[J]. BMC Surg, 2001, 1: 3.
[21]
Mcpherson TB, Liang H, Record RD, et al. Galalpha(1, 3)Gal epitope in porcine small intestinal submucosa[J]. Tissue Eng, 2000, 6(3): 233-239.
[22]
Novitsky YW, Harrell AG, Cristiano JA, et al. Comparative Evaluation of Adhesion Formation, Strength of Ingrowth, and Textile Properties of Prosthetic Meshes After Long-Term Intra-Abdominal Implantation in a Rabbit[J]. J Surg Res, 2007, 140(1): 6-11.
[23]
Reynvoet E, Chiers K, Van Overbeke I, et al. Intraperitoneal mesh devices for small midline hernias: mesh behavior in a porcine model[J]. Hernia, 2015, 19(6): 955-963.
[24]
Becker JM, Dayton MT, Fazio VW, et al. Prevention of postoperative abdominal adhesions by a sodium hyaluronate-based bioresorbable membrane: a prospective, randomized, double-blind multicenter study[J]. J Am Coll Surg, 1996, 183(4): 297-306.
[25]
Biondo-Simões ML, Carvalho LB, Conceição LT, et al. Comparative study of Polypropylene versus Parietex composite®, Vicryl® and Ultrapro® meshes, regarding the formation of intraperitoneal adhesions[J]. Acta Cir Bras, 2017, 32: 98-107.
[26]
Hollins AW, Atia A, Zhang G, et al. Ventral Hernia Reconstruction With GORE ENFORM Biomaterial[J]. Plast Surg, 2022.
[27]
Zou MH, Zhao X, Zhang XX, et al. Bio-inspired multiple composite film with anisotropic surface wettability and adhesion for tissue repair[J]. Chem Eng J, 2020, 398: 125563.
[28]
Liu ZN, Liu JJ, Liu N, et al. Tailoring electrospun mesh for a compliant remodeling in the repair of full-thickness abdominal wall defect - The role of decellularized human amniotic membrane and silk fibroin[J]. Mater Sci Eng C Mater Biol Appl, 2021, 127: 112235.
[29]
Liang WW, He WY, Huang RK, et al. Peritoneum-Inspired Janus Porous Hydrogel with Anti-Deformation, Anti-Adhesion, and Pro-Healing Characteristics for Abdominal Wall Defect Treatment[J]. Adv Mater, 2022, 34(15): 2108992.
[30]
Sun R, Lei L, Ji JM, et al. Designing a bi-layer multifunctional hydrogel patch based on polyvinyl alcohol, quaternized chitosan and gallic acid for abdominal wall defect repair[J]. Int J Biol Macromol, 2024, 263(Pt 1): 130291.
[31]
Saiding Q, Chen YY, Wang J, et al. Abdominal wall hernia repair: from prosthetic meshes to smart materials[J]. Mater Today Bio, 2023, 21: 100691.
[32]
Minardi S, Taraballi F, Wang X, et al. Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model[J]. Acta Biomater, 2017, 50: 165-177.
[33]
Asvar Z, Fadaie M, Azarpira N, et al. Novel Polycaprolactone- Chitosan Hybrid Scaffold: A Double-Sided Hernia Mesh for Regeneration of Abdominal Wall Defects with Minimized Adverse Adhesions[J]. Macromolecular Materials and Engineering, 2024, 309(1): 2300286.
[34]
Liu JJ, Tang R, Zhu XQ, et al. Ibuprofen-loaded bilayer electrospun mesh modulates host response toward promoting full-thickness abdominal wall defect repair[J]. J Biomed Mater Res A, 2024, 1-15.
[35]
He PY, Wang DW, Zheng RZ, et al. An antibacterial biologic patch based on bacterial cellulose for repair of infected hernias[J]. Carbohydr Polym, 2024, 333: 121942.
[36]
Rauchfuss F, Helble J, Bruns J, et al. Biocellulose for Incisional Hernia Repair-An Experimental Pilot Study[J]. Nanomaterials, 2019, 9(2): 236.
[37]
Pérez-Köhler B, Benito-Martínez S, Rodríguez M, et al. Experimental study on the use of a chlorhexidine-loaded carboxymethylcellulose gel as antibacterial coating for hernia repair meshes[J]. Hernia, 2019, 23(4): 789-800.
[38]
Qiao YS, Zhang Q, Wang Q, et al. Chrysanthemum-like hierarchitectures decorated on polypropylene hernia mesh and their anti-inflammatory effects[J]. Journal of Polymer Research, 2022, 30(1): 4.
[39]
Hu J, Tao MY, Sun FH, et al. Multifunctional hydrogel based on dopamine-modified hyaluronic acid, gelatin and silver nanoparticles for promoting abdominal wall defect repair[J]. Int J Biol Macromol, 2022, 222: 55-64.
[40]
Kingsnorth AN, Shahid MK, Valliattu AJ, et al. Open Onlay Mesh Repair for Major Abdominal Wall Hernias with Selective Use of Components Separation and Fibrin Sealant[J]. World J Surg, 2008, 32(1): 26-30.
[41]
Wang J, Le K, Guo X, et al. Platelet-rich fibrin prevents postoperative intestinal adhesion[J]. J Biomed Mater Res A, 2020, 108(5): 1077-1085.
[42]
Hu QX, Wu JJ, Zhang HG, et al. Designing Double-Layer Multimaterial Composite Patch Scaffold with Adhesion Resistance for Hernia Repair[J]. Macromol Biosci, 2022, 22(6): 2100510.
[43]
Pisani S, Mauri V, Negrello E, et al. Hybrid 3D-Printed and Electrospun Scaffolds Loaded with Dexamethasone for Soft Tissue Applications[J]. Pharmaceutics, 2023, 15(10): 2478.
[44]
Mao Y, Meng YX, Li SJ, et al. Alginate-assistant nanofiber integrated with polypropylene hernia mesh for efficient anti-adhesion effects and enhanced tissue compatibility[J]. Composites Part B: Engineering, 2022, 235: 109761.
[45]
Jiao YJ, Yang XW, Li Y, et al. Spider-Silk-like Fiber Mat-Covered Polypropylene Warp-Knitted Hernia Mesh for Inhibition of Fibrosis under Dynamic Environment[J]. Biomacromolecules, 2024, 25(2): 1214-1227.
[46]
Chalony C, Aguilar LE, Kim JY, et al. Development of electrospun core-shell polymeric mat using poly(ethyl-2) cyanoacrylate/ polyurethane to attenuate biological adhesion on polymeric mesh implants[J]. Mater Sci Eng C Mater Biol Appl, 2021, 122: 111930.
[47]
Mehrban N, Pineda Molina C, Quijano LM, et al. Host macrophage response to injectable hydrogels derived from ECM and α-helical peptides[J]. Acta Biomater, 2020, 111: 141-152.
[48]
Qiao YS, Zhang Q, Wang Q, et al. Filament-anchored hydrogel layer on polypropylene hernia mesh with robust anti-inflammatory effects[J]. Acta Biomater, 2021, 128: 277-290.
[49]
Zhang SB, Xu KG, Ge LP, et al. A novel nano-silver coated and hydrogel-impregnated polyurethane nanofibrous mesh for ventral hernia repair[J]. RSC Advances, 2016, 6(93): 90571-90578.
[50]
Jiao YJ, Li CJ, Li SJ, et al. Hernia Mesh with Biomechanical and Mesh-Tissue Interface Dual Compliance for Scarless Abdominal Wall Reconstruction[J]. Advanced Functional Materials, 2023, 33(48): 2305714.
[51]
Serafim A, Cecoltan S, Olăreț E, et al. Bioinspired Hydrogel Coating Based on Methacryloyl Gelatin Bioactivates Polypropylene Meshes for Abdominal Wall Repair[J]. Polymers(Basel), 2020, 12(8): 1677.
[52]
Chen YL, Li SJ, Jia Z, et al. Effects of Polypropylene Mesh vs Polycaprolactone/Polyvinyl Alcohol Mesh Coated with Nanofiber Containing VEGF165 and FGF-21 on Abdominal Wall Reconstruction in Rat[J]. Indian J Surg, 2023, 85(5): 1099-1106.
[53]
Jiang TG, Wang D, Zhang XQ, et al. Electrospinning of chitosan/polyvinyl alcohol Pickering emulsion with tea tree essential oil loaded for anti-infection wound dressings[J]. Materials Chemistry and Physics, 2024, 311: 128561.
[54]
Afewerki S, Bassous N, Harb SV, et al. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair[J]. Commun Biol, 2021, 4(1): 233.
[55]
Belbéoch C, Lejeune J, Vroman P, et al. Silkworm and spider silk electrospinning: a review[J]. Environ Chem Lett, 2021, 19(2): 1737-1763.
[56]
Luan FM, Cao WB, Cao CH, et al. Construction and properties of the silk fibroin and polypropylene composite biological mesh for abdominal incisional hernia repair[J]. Front Bioeng Biotechnol, 2022, 10: 949917.
[57]
Yang Z, Song ZC, Nie X, et al. A smart scaffold composed of three-dimensional printing and electrospinning techniques and its application in rat abdominal wall defects[J]. Stem Cell Res Ther, 2020, 11(1): 533.
[58]
Silveira RK, Coelho ARB, Pinto FCM, et al. Bioprosthetic mesh of bacterial cellulose for treatment of abdominal muscle aponeurotic defect in rat model[J]. J Mater Sci Mater Med, 2016, 27(8): 129.
[59]
Ji DX, Lin YG, Guo XY, et al. Electrospinning of nanofibres[J]. Nat Rev Methods Primers, 2024.
[60]
Ray SS, Chen SS, Li CW, et al. A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application[J]. RSC Adv, 2016, 6(88): 85495-85514.
[61]
Chen HW, Zheng CC, Zhang FS, et al. One-step synthesis of Janus hydrogel via heterogeneous distribution of sodium α-linoleate driven by surfactant self-aggregation[J]. Sci Adv, 2023, 9(45): eadj3186.
[62]
Cui CY, Wu TL, Chen XY, et al. A Janus Hydrogel Wet Adhesive for Internal Tissue Repair and Anti-Postoperative Adhesion[J]. Adv Funct Mater, 2020, 30(49): 2005689.
[63]
Chen K, Liu CY, Huang JH, et al. A Conformable and Tough Janus Adhesive Patch with Limited 1D Swelling Behavior for Internal Bioadhesion[J]. Adv Funct Mater, 2023, 33(41): 2303836.
[1] 薛昶, 王翔, 冯利, 金鑫, 王治伟. 生物补片盆底修补术和直接缝合术在低位直肠癌患者盆底重建中的应用研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(03): 327-329.
[2] 刘柏隆, 周祥福. 经阴道膀胱膨出前盆补片修补术 + 阴道后壁修补术[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 128-128.
[3] 曹能琦, 张恒, 郑立锋, 陶庆松, 嵇振岭. Ad-Hoc 自裁剪补片用于造口旁疝Sugarbaker 修补术[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 620-623.
[4] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[5] 王苏睿, 胡根, 邵国益. A 型肉毒杆菌毒素在腹腔开放后腹壁缺损修复中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 649-653.
[6] 顾熙, 徐子宇, 周澍, 张吴楼, 张业鹏, 林昊, 刘宗航, 嵇振岭, 郑立锋. 腹股沟疝腹膜前间隙无张力修补术后补片感染10 例报道[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 665-669.
[7] 臧宇, 姚胜, 朱新勇, 戎世捧, 田智超. 低温等离子射频消融治疗腹壁疝术后补片感染的临床效果[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 687-692.
[8] 朱佳琳, 方向, 贵诗雨, 黄丹, 周小雨, 郭文恺. 大鼠切口疝腹膜前间隙补片修补术后血清中VEGF 和Ang-1 的表达情况[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 703-707.
[9] 周艳, 李盈, 周小兵, 程发辉, 何恒正. 不同类型补片联合Nissen 胃底折叠术修补食管裂孔疝的疗效及复发潜在危险因素[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 528-533.
[10] 汤福鑫, 黄浩男, 马宁, 周太成, 陈双. 疝补片的发展:从人工补片到智能材料[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 365-368.
[11] 许伟, 曹道成, 孙畅, 马雨九. 不同补片用于腹股沟疝腹腔镜手术中的安全性及对患者功能康复的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 423-427.
[12] 盛伟伟, 林峰, 武梦成, 张嘉炜, 汪明庆, 熊茂明. 无张力疝修补术后补片感染32例再手术的疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(03): 311-314.
[13] 朱俊佳, 孙琦, 徐文龙, 陆天宇, 冯强, 储涛, 邢春根, 高春冬, 俞一峰, 赵振国. 永久性结肠造口预防性补片置入对预防造口旁疝价值的Meta分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(03): 336-342.
[14] 高旭, 李若凡, 孙立新, 刘佐军, 田广健. Miles手术中预置腹膜前补片预防造口旁疝的效果及安全性[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(03): 266-272.
[15] 胡子豪, 王喆, 陈建海, 齐岩松, 徐永胜. 聚合物材料在肩袖损伤治疗中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 362-368.
阅读次数
全文


摘要