[1] |
顾岩, 田文, 王平, 等. 腹壁缺损修复与重建中国专家共识(2019版)[J]. 中国实用外科杂志, 2019, 39(2): 101-109.
|
[2] |
Akcakaya A, Aydogdu I, Citgez B. Investigation into the optimal prosthetic material for wound healing of abdominal wall defects[J]. Exp Ther Med, 2018, 15(2): 1622-1625.
|
[3] |
Yang B, Jiang ZP, Li YR, et al. Long-term outcome for open preperitoneal mesh repair of recurrent inguinal hernia[J]. Int J Surg, 2015, 19: 134-136.
|
[4] |
Miserez M, Jairam AP, Boersema GSA, et al. Resorbable Synthetic Meshes for Abdominal Wall Defects in Preclinical Setting: A Literature Review[J]. J Surg Res, 2019, 237: 67-75.
|
[5] |
Domen A, Stabel C, Jawad R, et al. Postoperative ileus after laparoscopic primary and incisional abdominal hernia repair with intraperitoneal mesh (DynaMesh®-IPOM versus ParietexTM Composite): a single institution experience[J]. Langenbecks Arch Surg, 2021, 406(1): 209-218.
|
[6] |
Kubota M, Makita N, Inoue K, et al. Laparoscopic Repair of Ureteral Diverticulum Caused by Ureterosciatic Hernia[J]. Urology, 2020, 140: e1-e3.
|
[7] |
Liang KW, Ding CC, Li JJ, et al. A Review of Advanced Abdominal Wall Hernia Patch Materials[J]. Adv Healthc Mater, 2023, e2303506.
|
[8] |
Zhang J, Hu ZQ, Turner NJ, et al. Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template[J]. Biomaterials, 2016, 89: 114-126.
|
[9] |
Tang FX, Miao DT, Huang RK, et al. Double-Layer Asymmetric Porous Mesh with Dynamic Mechanical Support Properties Enables Efficient Single-Stage Repair of Contaminated Abdominal Wall Defect[J]. Adv Mater, 2024, e2307845.
|
[10] |
Tan WP, Lavu H, Rosato EL, et al. Edoardo Bassini(1844-1924): father of modern-day hernia surgery[J]. Am Surg, 2013, 79(11): 1131-1133.
|
[11] |
Shi YL, Su ZX, Li LP, et al. Comparing the effects of Bassini versus tension-free hernioplasty: 3 years’ follow-up[J]. Front Med China, 2010, 4(4): 463-468.
|
[12] |
过文泰, 胡民辉, 黄榕康, 等. 疝外科材料学百年发展及未来展望 [J]. 中华胃肠外科杂志, 2018, 21 (7): 828-832.
|
[13] |
Wolstenholme JT. Use of commercial dacron fabric in the repair of inguinal hernias and abdominal wall defects[J]. AMA Arch Surg, 1956, 73(6): 1004-1008.
|
[14] |
Usher FC, Gannon JP. Marlex mesh, a new plastic mesh for replacing tissue defects. I. Experimental studies[J]. AMA Arch Surg, 1959, 78(1): 131-137.
|
[15] |
于凡, 伍波, 康杰. 疝修补材料的研究进展及展望[J]. 外科理论与实践, 2022, 27(4): 375-379.
|
[16] |
Delany HM, Porreca F, Mitsudo S, et al. Splenic capping: an experimental study of a new technique for splenorrhaphy using woven polyglycolic acid mesh[J]. Ann Surg, 1982, 196(2): 187-193.
|
[17] |
Lamb JP, Vitale T, Kaminski DL. Comparative evaluation of synthetic meshes used for abdominal wall replacement[J]. Surgery, 1983, 93(5): 643-648.
|
[18] |
孙立, 陈杰, 申英末, 等. 生物补片在腹股沟疝治疗中应用[J]. 中国实用外科杂志, 2017, 37(11): 1223-1227.
|
[19] |
Itani KMF, Rosen M, Vargo D, et al. Prospective study of single-stage repair of contaminated hernias using a biologic porcine tissue matrix: the RICH Study[J]. Surgery, 2012, 152(3): 498-505.
|
[20] |
Sakorafas GH, Halikias I, Nissotakis C, et al. Open tension free repair of inguinal hernias; the Lichtenstein technique[J]. BMC Surg, 2001, 1: 3.
|
[21] |
Mcpherson TB, Liang H, Record RD, et al. Galalpha(1, 3)Gal epitope in porcine small intestinal submucosa[J]. Tissue Eng, 2000, 6(3): 233-239.
|
[22] |
Novitsky YW, Harrell AG, Cristiano JA, et al. Comparative Evaluation of Adhesion Formation, Strength of Ingrowth, and Textile Properties of Prosthetic Meshes After Long-Term Intra-Abdominal Implantation in a Rabbit[J]. J Surg Res, 2007, 140(1): 6-11.
|
[23] |
Reynvoet E, Chiers K, Van Overbeke I, et al. Intraperitoneal mesh devices for small midline hernias: mesh behavior in a porcine model[J]. Hernia, 2015, 19(6): 955-963.
|
[24] |
Becker JM, Dayton MT, Fazio VW, et al. Prevention of postoperative abdominal adhesions by a sodium hyaluronate-based bioresorbable membrane: a prospective, randomized, double-blind multicenter study[J]. J Am Coll Surg, 1996, 183(4): 297-306.
|
[25] |
Biondo-Simões ML, Carvalho LB, Conceição LT, et al. Comparative study of Polypropylene versus Parietex composite®, Vicryl® and Ultrapro® meshes, regarding the formation of intraperitoneal adhesions[J]. Acta Cir Bras, 2017, 32: 98-107.
|
[26] |
Hollins AW, Atia A, Zhang G, et al. Ventral Hernia Reconstruction With GORE ENFORM Biomaterial[J]. Plast Surg, 2022.
|
[27] |
Zou MH, Zhao X, Zhang XX, et al. Bio-inspired multiple composite film with anisotropic surface wettability and adhesion for tissue repair[J]. Chem Eng J, 2020, 398: 125563.
|
[28] |
Liu ZN, Liu JJ, Liu N, et al. Tailoring electrospun mesh for a compliant remodeling in the repair of full-thickness abdominal wall defect - The role of decellularized human amniotic membrane and silk fibroin[J]. Mater Sci Eng C Mater Biol Appl, 2021, 127: 112235.
|
[29] |
Liang WW, He WY, Huang RK, et al. Peritoneum-Inspired Janus Porous Hydrogel with Anti-Deformation, Anti-Adhesion, and Pro-Healing Characteristics for Abdominal Wall Defect Treatment[J]. Adv Mater, 2022, 34(15): 2108992.
|
[30] |
Sun R, Lei L, Ji JM, et al. Designing a bi-layer multifunctional hydrogel patch based on polyvinyl alcohol, quaternized chitosan and gallic acid for abdominal wall defect repair[J]. Int J Biol Macromol, 2024, 263(Pt 1): 130291.
|
[31] |
Saiding Q, Chen YY, Wang J, et al. Abdominal wall hernia repair: from prosthetic meshes to smart materials[J]. Mater Today Bio, 2023, 21: 100691.
|
[32] |
Minardi S, Taraballi F, Wang X, et al. Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model[J]. Acta Biomater, 2017, 50: 165-177.
|
[33] |
Asvar Z, Fadaie M, Azarpira N, et al. Novel Polycaprolactone- Chitosan Hybrid Scaffold: A Double-Sided Hernia Mesh for Regeneration of Abdominal Wall Defects with Minimized Adverse Adhesions[J]. Macromolecular Materials and Engineering, 2024, 309(1): 2300286.
|
[34] |
Liu JJ, Tang R, Zhu XQ, et al. Ibuprofen-loaded bilayer electrospun mesh modulates host response toward promoting full-thickness abdominal wall defect repair[J]. J Biomed Mater Res A, 2024, 1-15.
|
[35] |
He PY, Wang DW, Zheng RZ, et al. An antibacterial biologic patch based on bacterial cellulose for repair of infected hernias[J]. Carbohydr Polym, 2024, 333: 121942.
|
[36] |
Rauchfuss F, Helble J, Bruns J, et al. Biocellulose for Incisional Hernia Repair-An Experimental Pilot Study[J]. Nanomaterials, 2019, 9(2): 236.
|
[37] |
Pérez-Köhler B, Benito-Martínez S, Rodríguez M, et al. Experimental study on the use of a chlorhexidine-loaded carboxymethylcellulose gel as antibacterial coating for hernia repair meshes[J]. Hernia, 2019, 23(4): 789-800.
|
[38] |
Qiao YS, Zhang Q, Wang Q, et al. Chrysanthemum-like hierarchitectures decorated on polypropylene hernia mesh and their anti-inflammatory effects[J]. Journal of Polymer Research, 2022, 30(1): 4.
|
[39] |
Hu J, Tao MY, Sun FH, et al. Multifunctional hydrogel based on dopamine-modified hyaluronic acid, gelatin and silver nanoparticles for promoting abdominal wall defect repair[J]. Int J Biol Macromol, 2022, 222: 55-64.
|
[40] |
Kingsnorth AN, Shahid MK, Valliattu AJ, et al. Open Onlay Mesh Repair for Major Abdominal Wall Hernias with Selective Use of Components Separation and Fibrin Sealant[J]. World J Surg, 2008, 32(1): 26-30.
|
[41] |
Wang J, Le K, Guo X, et al. Platelet-rich fibrin prevents postoperative intestinal adhesion[J]. J Biomed Mater Res A, 2020, 108(5): 1077-1085.
|
[42] |
Hu QX, Wu JJ, Zhang HG, et al. Designing Double-Layer Multimaterial Composite Patch Scaffold with Adhesion Resistance for Hernia Repair[J]. Macromol Biosci, 2022, 22(6): 2100510.
|
[43] |
Pisani S, Mauri V, Negrello E, et al. Hybrid 3D-Printed and Electrospun Scaffolds Loaded with Dexamethasone for Soft Tissue Applications[J]. Pharmaceutics, 2023, 15(10): 2478.
|
[44] |
Mao Y, Meng YX, Li SJ, et al. Alginate-assistant nanofiber integrated with polypropylene hernia mesh for efficient anti-adhesion effects and enhanced tissue compatibility[J]. Composites Part B: Engineering, 2022, 235: 109761.
|
[45] |
Jiao YJ, Yang XW, Li Y, et al. Spider-Silk-like Fiber Mat-Covered Polypropylene Warp-Knitted Hernia Mesh for Inhibition of Fibrosis under Dynamic Environment[J]. Biomacromolecules, 2024, 25(2): 1214-1227.
|
[46] |
Chalony C, Aguilar LE, Kim JY, et al. Development of electrospun core-shell polymeric mat using poly(ethyl-2) cyanoacrylate/ polyurethane to attenuate biological adhesion on polymeric mesh implants[J]. Mater Sci Eng C Mater Biol Appl, 2021, 122: 111930.
|
[47] |
Mehrban N, Pineda Molina C, Quijano LM, et al. Host macrophage response to injectable hydrogels derived from ECM and α-helical peptides[J]. Acta Biomater, 2020, 111: 141-152.
|
[48] |
Qiao YS, Zhang Q, Wang Q, et al. Filament-anchored hydrogel layer on polypropylene hernia mesh with robust anti-inflammatory effects[J]. Acta Biomater, 2021, 128: 277-290.
|
[49] |
Zhang SB, Xu KG, Ge LP, et al. A novel nano-silver coated and hydrogel-impregnated polyurethane nanofibrous mesh for ventral hernia repair[J]. RSC Advances, 2016, 6(93): 90571-90578.
|
[50] |
Jiao YJ, Li CJ, Li SJ, et al. Hernia Mesh with Biomechanical and Mesh-Tissue Interface Dual Compliance for Scarless Abdominal Wall Reconstruction[J]. Advanced Functional Materials, 2023, 33(48): 2305714.
|
[51] |
Serafim A, Cecoltan S, Olăreț E, et al. Bioinspired Hydrogel Coating Based on Methacryloyl Gelatin Bioactivates Polypropylene Meshes for Abdominal Wall Repair[J]. Polymers(Basel), 2020, 12(8): 1677.
|
[52] |
Chen YL, Li SJ, Jia Z, et al. Effects of Polypropylene Mesh vs Polycaprolactone/Polyvinyl Alcohol Mesh Coated with Nanofiber Containing VEGF165 and FGF-21 on Abdominal Wall Reconstruction in Rat[J]. Indian J Surg, 2023, 85(5): 1099-1106.
|
[53] |
Jiang TG, Wang D, Zhang XQ, et al. Electrospinning of chitosan/polyvinyl alcohol Pickering emulsion with tea tree essential oil loaded for anti-infection wound dressings[J]. Materials Chemistry and Physics, 2024, 311: 128561.
|
[54] |
Afewerki S, Bassous N, Harb SV, et al. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair[J]. Commun Biol, 2021, 4(1): 233.
|
[55] |
Belbéoch C, Lejeune J, Vroman P, et al. Silkworm and spider silk electrospinning: a review[J]. Environ Chem Lett, 2021, 19(2): 1737-1763.
|
[56] |
Luan FM, Cao WB, Cao CH, et al. Construction and properties of the silk fibroin and polypropylene composite biological mesh for abdominal incisional hernia repair[J]. Front Bioeng Biotechnol, 2022, 10: 949917.
|
[57] |
Yang Z, Song ZC, Nie X, et al. A smart scaffold composed of three-dimensional printing and electrospinning techniques and its application in rat abdominal wall defects[J]. Stem Cell Res Ther, 2020, 11(1): 533.
|
[58] |
Silveira RK, Coelho ARB, Pinto FCM, et al. Bioprosthetic mesh of bacterial cellulose for treatment of abdominal muscle aponeurotic defect in rat model[J]. J Mater Sci Mater Med, 2016, 27(8): 129.
|
[59] |
Ji DX, Lin YG, Guo XY, et al. Electrospinning of nanofibres[J]. Nat Rev Methods Primers, 2024.
|
[60] |
Ray SS, Chen SS, Li CW, et al. A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application[J]. RSC Adv, 2016, 6(88): 85495-85514.
|
[61] |
Chen HW, Zheng CC, Zhang FS, et al. One-step synthesis of Janus hydrogel via heterogeneous distribution of sodium α-linoleate driven by surfactant self-aggregation[J]. Sci Adv, 2023, 9(45): eadj3186.
|
[62] |
Cui CY, Wu TL, Chen XY, et al. A Janus Hydrogel Wet Adhesive for Internal Tissue Repair and Anti-Postoperative Adhesion[J]. Adv Funct Mater, 2020, 30(49): 2005689.
|
[63] |
Chen K, Liu CY, Huang JH, et al. A Conformable and Tough Janus Adhesive Patch with Limited 1D Swelling Behavior for Internal Bioadhesion[J]. Adv Funct Mater, 2023, 33(41): 2303836.
|