切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 365 -368. doi: 10.3877/cma.j.issn.1674-392X.2024.04.002

综述

疝补片的发展:从人工补片到智能材料
汤福鑫1, 黄浩男1, 马宁1, 周太成1,(), 陈双1,()   
  1. 1. 510655 广州,中山大学附属第六医院普通外科(疝与腹壁外科);510655 广州,广东省结直肠盆底疾病研究重点实验室;510655 广州市黄埔区中六生物医学创新研究院
  • 收稿日期:2024-06-24 出版日期:2024-08-18
  • 通信作者: 周太成, 陈双
  • 基金资助:
    国家资助博士后研究人员计划资助项目(GZB20240902); 国家临床重点专科基金资助项目(2012649)

The development of hernia meshes: from artificial meshes to intelligent materials

Fuxin Tang1, Haonan Huang1, Ning Ma1, Taicheng Zhou1,(), Shuang Chen1,()   

  1. 1. Department of General Surgery (Hernia and Abdominal Wall Surgery), the Sixth Affiliated Hospital, Sun Yat-sen University, Guang zhou 510655, Guangdong Province, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guang zhou 510655, Guangdong Province, China; Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guang zhou 510655, Guangdong Province, China
  • Received:2024-06-24 Published:2024-08-18
  • Corresponding author: Taicheng Zhou, Shuang Chen
引用本文:

汤福鑫, 黄浩男, 马宁, 周太成, 陈双. 疝补片的发展:从人工补片到智能材料[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 365-368.

Fuxin Tang, Haonan Huang, Ning Ma, Taicheng Zhou, Shuang Chen. The development of hernia meshes: from artificial meshes to intelligent materials[J]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2024, 18(04): 365-368.

疝修补术是全世界最常见的外科手术之一。为恢复肌筋膜层生理结构和功能的完整,腹壁疝修补需要植入补片进行重建。随着材料学快速发展,已有超过200余种疝补片应用于临床,但现有的补片仍然缺乏理想的结构设计以及面临诸多术后并发症等问题。本文详细回顾了疝补片发展和现状,包括金属材料、合成补片、生物补片等,并重点介绍了近年来水凝胶、3D打印支架等智能疝修补材料的研究,为外科医生选择补片提供一定参考依据。

Hernia repair is one of the most common surgical procedures in the world. To restore the integrity of the physiological structure and function of the myofascial layer, abdominal wall hernia repair requires the implantation of meshes for reconstruction. With the rapid development of materials science, more than 200 types of hernia meshes have been applied in clinical practice, but the existing meshes still lack ideal structural design and face many postoperative complications. This article reviews the development and current situation of hernia meshes in detail, including metal materials, synthetic meshes, and biologic meshes, and focuses on the research of intelligent hernia repair materials such as hydrogel and 3D printing in recent years, which provides some reference for surgeons to select meshes.

[1]
Kalaba S, Gerhard E, Winder JS, et al. Design Strategies and Applications of Biomaterials and Devices for Hernia Repair[J]. Bioact Mater, 2016, 1(1): 2-17.
[2]
申英末, 孙蕊, 陈杰, 等. 我国疝和腹壁外科研究进展及未来展望[J]. 中华消化外科杂志, 2023, 22(1): 100-104.
[3]
Poulose BK, Shelton J, Phillips S, et al. Epidemiology and cost of ventral hernia repair: making the case for hernia research[J]. Hernia, 2012, 16(2): 179-183.
[4]
Gillion JF, Sanders D, Miserez M, et al. The economic burden of incisional ventral hernia repair: a multicentric cost analysis[J]. Hernia, 2016, 20(6): 819-830..
[5]
Schmidt A, Taylor D. Erosion of soft tissue by polypropylene mesh products[J]. J Mech Behav Biomed Mater, 2021, 115: 104281.
[6]
Zogbi L, Trindade EN, Trindade MR. Comparative study of shrinkage, inflammatory response and fibroplasia in heavyweight and lightweight meshes[J]. Hernia, 2013, 17(6): 765-772.
[7]
Kokotovic D, Bisgaard T, Helgstrand F. Long-term Recurrence and Complications Associated With Elective Incisional Hernia Repair[J]. JAMA, 2016, 316(15): 1575-1582.
[8]
Sharma R, Fadaee N, Zarrinkhoo E, et al. Why we remove mesh[J]. Hernia, 2018, 22(6): 953-959.
[9]
Saha T, Houshyar S, Ranjan Sarker S, et al. Surface-Functionalized Polypropylene Surgical Mesh for Enhanced Performance and Biocompatibility[J]. ACS Applied Bio Materials, 2019, 2(12): 5905-5915.
[10]
Liu Z, Wei N, Tang R. Functionalized Strategies and Mechanisms of the Emerging Mesh for Abdominal Wall Repair and Regeneration[J]. ACS Biomater Sci Eng, 2021, 7(6): 2064-2082.
[11]
Rosen MJ. Polyester-based mesh for ventral hernia repair: is it safe?[J]. Am J Surg, 2009, 197(3): 353-359.
[12]
Scimone ML, Cote LE, Reddien PW. Orthogonal muscle fibres have different instructive roles in planarian regeneration[J]. Nature, 2017, 551(7682): 623-628.
[13]
Yin X, Hao Y, Lu Y, et al. Bio-Multifunctional Hydrogel Patches for Repairing Full-Thickness Abdominal Wall Defects[J]. Adv Funct Mater, 2021, 31(41): 2105614.
[14]
Harrison JH. A teflon weave for replacing tissue defects[J]. Surg Gynecol Obstet, 1957, 104(5): 584-590.
[15]
Usher FC. Hernia repair with Marlex mesh. An analysis of 541 cases[J]. Arch Surg, 1962, 84: 325-328.
[16]
Sanders DL, Kingsnorth AN. Prosthetic mesh materials used in hernia surgery[J]. Expert Rev Med Devices, 2012, 9(2): 159-179.
[17]
Law NW, Ellis H. A comparison of polypropylene mesh and expanded polytetrafluoroethylene patch for the repair of contaminated abdominal wall defects--an experimental study[J]. Surgery, 1991, 109(5): 652-655.
[18]
Martin DP, Badhwar A, Shah DV, et al. Characterization of poly-4-hydroxybutyrate mesh for hernia repair applications[J]. J Surg Res, 2013, 184(2): 766-773.
[19]
Hjort H, Mathisen T, Alves A, et al. Three-year results from a preclinical implantation study of a long-term resorbable surgical mesh with time-dependent mechanical characteristics[J]. Hernia, 2012, 16(2): 191-197.
[20]
Brismar B, Pettersson N. Polyglycolic acid(Dexon) mesh graft for abdominal wound support in healing-compromised patients[J]. Acta Chir Scand, 1988, 154(9): 509-510.
[21]
Marmon LM, Vinocur CD, Standiford SB, et al. Evaluation of absorbable polyglycolic acid mesh as a wound support[J]. J Pediatr Surg, 1985, 20(6): 737-742.
[22]
Tyrell J, Silberman H, Chandrasoma P, et al. Absorbable versus permanent mesh in abdominal operations[J]. Surg Gynecol Obstet, 1989, 168(3): 227-232.
[23]
Ghetti M, Papa V, Deluca G, et al. Histological and ultrastructural evaluation of human decellularized matrix as a hernia repair device[J]. Ultrastruct Pathol, 2018, 42: 32-38.
[24]
Harth KC, Rosen MJ. Major complications associated with xenograft biologic mesh implantation in abdominal wall reconstruction[J]. Surg Innov, 2009, 16: 324-329.
[25]
Kamarajah SK, Chapman SJ, Glasbey J, et al. Systematic review of the stage of innovation of biological mesh for complex or contaminated abdominal wall closure[J]. BJS Open, 2018, 2: 371-380.
[26]
Garvey PB, Giordano SA, Baumann DP, et al. Long-Term Outcomes after Abdominal Wall Reconstruction with Acellular Dermal Matrix[J]. J Am Coll Surg, 2017, 224: 341-350.
[27]
Hassan AM, Franco CM, Shah NR, et al. Outcomes of Complex Abdominal Wall Reconstruction with Biologic Mesh in Patients with 8 Years of Follow-Up[J]. World J Surg, 2023, 47: 3175-3181.
[28]
Rosen MJ, Krpata DM, Petro CC, et al. Biologic vs Synthetic Mesh for Single-stage Repair of Contaminated Ventral Hernias: A Randomized Clinical Trial[J]. JAMA Surg, 2022, 157: 293-301.
[29]
Harris HW, Primus F, Young C, et al. Preventing Recurrence in Clean and Contaminated Hernias Using Biologic Versus Synthetic Mesh in Ventral Hernia Repair: The PRICE Randomized Clinical Trial[J]. Ann Surg, 2021, 273: 648-655.
[30]
Houshyar S, Sarker A, Jadhav A, et al. Polypropylene-nanodiamond composite for hernia mesh[J]. Mater Sci Eng C Mater Biol Appl, 2020, 111: 110780.
[31]
Zhao Y, Li X, Sun N, et al. Injectable Double Crosslinked Hydrogel-Polypropylene Composite Mesh for Repairing Full-Thickness Abdominal Wall Defects[J]. Adv Healthc Mater, 2024, e2304489.
[32]
Hu H, Sun H, Jiang Z, et al. Study on repair of abdominal wall defect rats with hernia mesh coated with chitosan-based photosensitive hydrogel[J]. Carbohydr Polym, 2022, 291: 119577.
[33]
Liu P, Fu K, Zeng X, et al. Fabrication and Characterization of Composite Meshes Loaded with Antimicrobial Peptides[J]. ACS Appl Mater Interfaces, 2019, 11: 24609-24617.
[34]
Lu S, Hu W, Zhang Z, et al. Sirolimus-coated, poly(L-lactic acid)-modified polypropylene mesh with minimal intra-peritoneal adhesion formation in a rat model[J]. Hernia, 2018, 22: 1051-1060.
[35]
Fann SA, Terracio L, Yan W, et al. A model of tissue-engineered ventral hernia repair[J]. J Invest Surg, 2006, 19: 193-205.
[36]
Kapischke M, Prinz K, Tepel J, et al. Precoating of alloplastic materials with living human fibroblasts--a feasibility study[J]. Surg Endosc, 2005, 19: 791-797.
[37]
Akbaba S, Atila D, Keskin D, et al. Multilayer fibroin/chitosan oligosaccharide lactate and pullulan immunomodulatory patch for treatment of hernia and prevention of intraperitoneal adhesion[J]. Carbohydr Polym, 2021, 265: 118066.
[38]
Qiao Y, Zhang Q, Wang Q, et al. Synergistic Anti-inflammatory Coating "Zipped Up" on Polypropylene Hernia Mesh[J]. ACS Appl Mater Interfaces, 2021; 13: 35456-35468.
[39]
Labay C, Canal JM, Modic M, et al. Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization[J]. Biomaterials, 2015, 71: 132-144.
[40]
East B, Plencner M, Kralovic M, et al. A polypropylene mesh modified with poly-ε-caprolactone nanofibers in hernia repair: large animal experiment[J]. Int J Nanomedicine, 2018, 13: 3129-3143.
[41]
Liang W, He W, Huang R, et al. Peritoneum-Inspired Janus Porous Hydrogel with Anti-Deformation, Anti-Adhesion, and Pro-Healing Characteristics for Abdominal Wall Defect Treatment[J]. Adv Mater, 2022, 34(15): e2108992.
[42]
Jiao Y, Li C, Li S, et al. Hernia Mesh with Biomechanical and Mesh-Tissue Interface Dual Compliance for Scarless Abdominal Wall Reconstruction[J]. Adv Funct Mater, 2023, 33: 2305714.
[43]
Su J, Liu B, He H, et al. Engineering High Strength and Super-Toughness of Unfolded Structural Proteins and their Extraordinary Anti-Adhesion Performance for Abdominal Hernia Repair[J]. Adv Mater, 2022, 34: e2200842.
[44]
Shin CS, Cabrera FJ, Lee R, et al. 3D-Bioprinted Inflammation Modulating Polymer Scaffolds for Soft Tissue Repair[J]. Adv Mater, 2021, 33: e2003778.
[1] 崔子豪, 阳跃, 赵景峰, 冯光, 庹晓晔. Fournier坏疽创面感染控制策略及创面修复的临床分析[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 319-323.
[2] 杨小栎, 李万富, 马柱, 马兰, 郑义, 付晓丽, 王晶. 钳式针一步法在小儿腹腔镜疝囊高位结扎术中的应用效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 535-538.
[3] 唐丹萍, 王萍, 江孟蝶, 杨晓蓉. 自体脂肪移植在乳腺癌术后乳房重建的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 582-585.
[4] 宋连奎, 王建成, 王竹林, 王春生, 木洪伟, 季洪阁. TAPP和TEP治疗腹股沟疝临床效果比较[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 445-447.
[5] 张云浩, 何玲敏, 孙旭, 马洪贵, 刘磊, 张见荣, 梅傲冰. 基于CT的三维重建模型及术前虚拟手术在输尿管狭窄腹腔镜手术中的应用研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 372-379.
[6] 陈睿龙, 李祥, 马健, 姜超, 朱腾飞, 王毅. 口腔黏膜输尿管成形术与狭窄段切除吻合术治疗输尿管狭窄的疗效比较[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 254-258.
[7] 夏慧, 廖慧, 戴艳萍, 吴俊萍, 杨诚, 李建雄, 刘存东. 医护合作——快速康复模式在单孔腹腔镜上尿路重建围手术期的应用研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 266-270.
[8] 李彬瑶, 邓富铭, 高晓峰, 赵彰, 张正涛, 周锐, 朱士博, 钟竞斌, 刘国昌, 伏雯. 机器人手术系统在小儿泌尿外科的应用与进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 284-288.
[9] 孙红燕, 李娟. 造口旁疝患者生活质量的影响因素分析[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(03): 273-276.
[10] 许桂祥, 吴海华, 赵鸿志, 徐丽, 胡晓萍, 周世龙, 武永明, 彭新刚. 后鞘前入路腹腔镜视野下腹股沟区脂肪归属的解剖要点及临床意义[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(03): 277-281.
[11] 张庆峰, 邓旭明, 段巧斌, 姚干, 张策. 腹腔镜完全腹膜外斜疝修补手术关闭内环口对血清肿发生率的影响[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(03): 282-290.
[12] 郝智勇, 雷霞, 张国锋, 李锋. 经腹腹膜前疝修补术治疗阴囊疝术后血清肿的相关危险因素分析及预测模型构建[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(03): 291-295.
[13] 徐杨荣, 杨毅, 王凤飞, 潘姣. 腹腔镜增强视野完全腹膜外疝修补术和腹腔镜腹膜内补片修补术在腹壁疝修补中的安全性及临床疗效[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(03): 296-301.
[14] 曹猛, 郭杰东, 朱灿, 许腾, 樊瑞智, 江涛, 宋军, 徐溢新. 完全腹腔镜右半结肠切除术中顺蠕动侧侧吻合的有效性及安全性评价[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 315-319.
[15] 陈秀晓, 隋文倩, 王珉鑫, 吴圆圆. 腹股沟斜疝并腹腔游离体超声表现一例[J]. 中华临床医师杂志(电子版), 2024, 18(05): 516-517.
阅读次数
全文


摘要