切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 365 -368. doi: 10.3877/cma.j.issn.1674-392X.2024.04.002

综述

疝补片的发展:从人工补片到智能材料
汤福鑫1, 黄浩男1, 马宁1, 周太成1,(), 陈双1,()   
  1. 1. 510655 广州,中山大学附属第六医院普通外科(疝与腹壁外科);510655 广州,广东省结直肠盆底疾病研究重点实验室;510655 广州市黄埔区中六生物医学创新研究院
  • 收稿日期:2024-06-24 出版日期:2024-08-18
  • 通信作者: 周太成, 陈双
  • 基金资助:
    国家资助博士后研究人员计划资助项目(GZB20240902); 国家临床重点专科基金资助项目(2012649)

The development of hernia meshes: from artificial meshes to intelligent materials

Fuxin Tang1, Haonan Huang1, Ning Ma1, Taicheng Zhou1,(), Shuang Chen1,()   

  1. 1. Department of General Surgery (Hernia and Abdominal Wall Surgery), the Sixth Affiliated Hospital, Sun Yat-sen University, Guang zhou 510655, Guangdong Province, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guang zhou 510655, Guangdong Province, China; Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guang zhou 510655, Guangdong Province, China
  • Received:2024-06-24 Published:2024-08-18
  • Corresponding author: Taicheng Zhou, Shuang Chen
引用本文:

汤福鑫, 黄浩男, 马宁, 周太成, 陈双. 疝补片的发展:从人工补片到智能材料[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 365-368.

Fuxin Tang, Haonan Huang, Ning Ma, Taicheng Zhou, Shuang Chen. The development of hernia meshes: from artificial meshes to intelligent materials[J/OL]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2024, 18(04): 365-368.

疝修补术是全世界最常见的外科手术之一。为恢复肌筋膜层生理结构和功能的完整,腹壁疝修补需要植入补片进行重建。随着材料学快速发展,已有超过200余种疝补片应用于临床,但现有的补片仍然缺乏理想的结构设计以及面临诸多术后并发症等问题。本文详细回顾了疝补片发展和现状,包括金属材料、合成补片、生物补片等,并重点介绍了近年来水凝胶、3D打印支架等智能疝修补材料的研究,为外科医生选择补片提供一定参考依据。

Hernia repair is one of the most common surgical procedures in the world. To restore the integrity of the physiological structure and function of the myofascial layer, abdominal wall hernia repair requires the implantation of meshes for reconstruction. With the rapid development of materials science, more than 200 types of hernia meshes have been applied in clinical practice, but the existing meshes still lack ideal structural design and face many postoperative complications. This article reviews the development and current situation of hernia meshes in detail, including metal materials, synthetic meshes, and biologic meshes, and focuses on the research of intelligent hernia repair materials such as hydrogel and 3D printing in recent years, which provides some reference for surgeons to select meshes.

[1]
Kalaba S, Gerhard E, Winder JS, et al. Design Strategies and Applications of Biomaterials and Devices for Hernia Repair[J]. Bioact Mater, 2016, 1(1): 2-17.
[2]
申英末, 孙蕊, 陈杰, 等. 我国疝和腹壁外科研究进展及未来展望[J]. 中华消化外科杂志, 2023, 22(1): 100-104.
[3]
Poulose BK, Shelton J, Phillips S, et al. Epidemiology and cost of ventral hernia repair: making the case for hernia research[J]. Hernia, 2012, 16(2): 179-183.
[4]
Gillion JF, Sanders D, Miserez M, et al. The economic burden of incisional ventral hernia repair: a multicentric cost analysis[J]. Hernia, 2016, 20(6): 819-830..
[5]
Schmidt A, Taylor D. Erosion of soft tissue by polypropylene mesh products[J]. J Mech Behav Biomed Mater, 2021, 115: 104281.
[6]
Zogbi L, Trindade EN, Trindade MR. Comparative study of shrinkage, inflammatory response and fibroplasia in heavyweight and lightweight meshes[J]. Hernia, 2013, 17(6): 765-772.
[7]
Kokotovic D, Bisgaard T, Helgstrand F. Long-term Recurrence and Complications Associated With Elective Incisional Hernia Repair[J]. JAMA, 2016, 316(15): 1575-1582.
[8]
Sharma R, Fadaee N, Zarrinkhoo E, et al. Why we remove mesh[J]. Hernia, 2018, 22(6): 953-959.
[9]
Saha T, Houshyar S, Ranjan Sarker S, et al. Surface-Functionalized Polypropylene Surgical Mesh for Enhanced Performance and Biocompatibility[J]. ACS Applied Bio Materials, 2019, 2(12): 5905-5915.
[10]
Liu Z, Wei N, Tang R. Functionalized Strategies and Mechanisms of the Emerging Mesh for Abdominal Wall Repair and Regeneration[J]. ACS Biomater Sci Eng, 2021, 7(6): 2064-2082.
[11]
Rosen MJ. Polyester-based mesh for ventral hernia repair: is it safe?[J]. Am J Surg, 2009, 197(3): 353-359.
[12]
Scimone ML, Cote LE, Reddien PW. Orthogonal muscle fibres have different instructive roles in planarian regeneration[J]. Nature, 2017, 551(7682): 623-628.
[13]
Yin X, Hao Y, Lu Y, et al. Bio-Multifunctional Hydrogel Patches for Repairing Full-Thickness Abdominal Wall Defects[J]. Adv Funct Mater, 2021, 31(41): 2105614.
[14]
Harrison JH. A teflon weave for replacing tissue defects[J]. Surg Gynecol Obstet, 1957, 104(5): 584-590.
[15]
Usher FC. Hernia repair with Marlex mesh. An analysis of 541 cases[J]. Arch Surg, 1962, 84: 325-328.
[16]
Sanders DL, Kingsnorth AN. Prosthetic mesh materials used in hernia surgery[J]. Expert Rev Med Devices, 2012, 9(2): 159-179.
[17]
Law NW, Ellis H. A comparison of polypropylene mesh and expanded polytetrafluoroethylene patch for the repair of contaminated abdominal wall defects--an experimental study[J]. Surgery, 1991, 109(5): 652-655.
[18]
Martin DP, Badhwar A, Shah DV, et al. Characterization of poly-4-hydroxybutyrate mesh for hernia repair applications[J]. J Surg Res, 2013, 184(2): 766-773.
[19]
Hjort H, Mathisen T, Alves A, et al. Three-year results from a preclinical implantation study of a long-term resorbable surgical mesh with time-dependent mechanical characteristics[J]. Hernia, 2012, 16(2): 191-197.
[20]
Brismar B, Pettersson N. Polyglycolic acid(Dexon) mesh graft for abdominal wound support in healing-compromised patients[J]. Acta Chir Scand, 1988, 154(9): 509-510.
[21]
Marmon LM, Vinocur CD, Standiford SB, et al. Evaluation of absorbable polyglycolic acid mesh as a wound support[J]. J Pediatr Surg, 1985, 20(6): 737-742.
[22]
Tyrell J, Silberman H, Chandrasoma P, et al. Absorbable versus permanent mesh in abdominal operations[J]. Surg Gynecol Obstet, 1989, 168(3): 227-232.
[23]
Ghetti M, Papa V, Deluca G, et al. Histological and ultrastructural evaluation of human decellularized matrix as a hernia repair device[J]. Ultrastruct Pathol, 2018, 42: 32-38.
[24]
Harth KC, Rosen MJ. Major complications associated with xenograft biologic mesh implantation in abdominal wall reconstruction[J]. Surg Innov, 2009, 16: 324-329.
[25]
Kamarajah SK, Chapman SJ, Glasbey J, et al. Systematic review of the stage of innovation of biological mesh for complex or contaminated abdominal wall closure[J]. BJS Open, 2018, 2: 371-380.
[26]
Garvey PB, Giordano SA, Baumann DP, et al. Long-Term Outcomes after Abdominal Wall Reconstruction with Acellular Dermal Matrix[J]. J Am Coll Surg, 2017, 224: 341-350.
[27]
Hassan AM, Franco CM, Shah NR, et al. Outcomes of Complex Abdominal Wall Reconstruction with Biologic Mesh in Patients with 8 Years of Follow-Up[J]. World J Surg, 2023, 47: 3175-3181.
[28]
Rosen MJ, Krpata DM, Petro CC, et al. Biologic vs Synthetic Mesh for Single-stage Repair of Contaminated Ventral Hernias: A Randomized Clinical Trial[J]. JAMA Surg, 2022, 157: 293-301.
[29]
Harris HW, Primus F, Young C, et al. Preventing Recurrence in Clean and Contaminated Hernias Using Biologic Versus Synthetic Mesh in Ventral Hernia Repair: The PRICE Randomized Clinical Trial[J]. Ann Surg, 2021, 273: 648-655.
[30]
Houshyar S, Sarker A, Jadhav A, et al. Polypropylene-nanodiamond composite for hernia mesh[J]. Mater Sci Eng C Mater Biol Appl, 2020, 111: 110780.
[31]
Zhao Y, Li X, Sun N, et al. Injectable Double Crosslinked Hydrogel-Polypropylene Composite Mesh for Repairing Full-Thickness Abdominal Wall Defects[J]. Adv Healthc Mater, 2024, e2304489.
[32]
Hu H, Sun H, Jiang Z, et al. Study on repair of abdominal wall defect rats with hernia mesh coated with chitosan-based photosensitive hydrogel[J]. Carbohydr Polym, 2022, 291: 119577.
[33]
Liu P, Fu K, Zeng X, et al. Fabrication and Characterization of Composite Meshes Loaded with Antimicrobial Peptides[J]. ACS Appl Mater Interfaces, 2019, 11: 24609-24617.
[34]
Lu S, Hu W, Zhang Z, et al. Sirolimus-coated, poly(L-lactic acid)-modified polypropylene mesh with minimal intra-peritoneal adhesion formation in a rat model[J]. Hernia, 2018, 22: 1051-1060.
[35]
Fann SA, Terracio L, Yan W, et al. A model of tissue-engineered ventral hernia repair[J]. J Invest Surg, 2006, 19: 193-205.
[36]
Kapischke M, Prinz K, Tepel J, et al. Precoating of alloplastic materials with living human fibroblasts--a feasibility study[J]. Surg Endosc, 2005, 19: 791-797.
[37]
Akbaba S, Atila D, Keskin D, et al. Multilayer fibroin/chitosan oligosaccharide lactate and pullulan immunomodulatory patch for treatment of hernia and prevention of intraperitoneal adhesion[J]. Carbohydr Polym, 2021, 265: 118066.
[38]
Qiao Y, Zhang Q, Wang Q, et al. Synergistic Anti-inflammatory Coating "Zipped Up" on Polypropylene Hernia Mesh[J]. ACS Appl Mater Interfaces, 2021; 13: 35456-35468.
[39]
Labay C, Canal JM, Modic M, et al. Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization[J]. Biomaterials, 2015, 71: 132-144.
[40]
East B, Plencner M, Kralovic M, et al. A polypropylene mesh modified with poly-ε-caprolactone nanofibers in hernia repair: large animal experiment[J]. Int J Nanomedicine, 2018, 13: 3129-3143.
[41]
Liang W, He W, Huang R, et al. Peritoneum-Inspired Janus Porous Hydrogel with Anti-Deformation, Anti-Adhesion, and Pro-Healing Characteristics for Abdominal Wall Defect Treatment[J]. Adv Mater, 2022, 34(15): e2108992.
[42]
Jiao Y, Li C, Li S, et al. Hernia Mesh with Biomechanical and Mesh-Tissue Interface Dual Compliance for Scarless Abdominal Wall Reconstruction[J]. Adv Funct Mater, 2023, 33: 2305714.
[43]
Su J, Liu B, He H, et al. Engineering High Strength and Super-Toughness of Unfolded Structural Proteins and their Extraordinary Anti-Adhesion Performance for Abdominal Hernia Repair[J]. Adv Mater, 2022, 34: e2200842.
[44]
Shin CS, Cabrera FJ, Lee R, et al. 3D-Bioprinted Inflammation Modulating Polymer Scaffolds for Soft Tissue Repair[J]. Adv Mater, 2021, 33: e2003778.
[1] 李子禹, 卢信星, 李双喜, 陕飞. 食管胃结合部腺癌腹腔镜手术重建方式的选择[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 5-8.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[4] 冯旺, 马振中, 汤林花. CT扫描三维重建在肝内胆管细胞癌腹腔镜肝切除术中的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 104-107.
[5] 刘柏隆, 周祥福. 经阴道膀胱膨出前盆补片修补术 + 阴道后壁修补术[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 128-128.
[6] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[7] 嵇振岭, 陈杰, 唐健雄. 重视复杂腹壁疝手术并发症的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 601-606.
[8] 江志鹏, 钟克力, 陈双. 复杂腹壁疝手术后腹腔高压与腹腔间室综合征的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 612-615.
[9] 王学虎, 赵渝. 复杂腹壁疝手术中血管损伤并发症的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 616-619.
[10] 曹能琦, 张恒, 郑立锋, 陶庆松, 嵇振岭. Ad-Hoc 自裁剪补片用于造口旁疝Sugarbaker 修补术[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 620-623.
[11] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[12] 马东扬, 李斌, 陆安清, 王光华, 雷文章, 宋应寒. Gilbert 与单层补片腹膜前疝修补术疗效的随机对照研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 629-633.
[13] 林凯, 潘勇, 赵高平, 杨春. 造口还纳术后切口疝的危险因素分析与预防策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 634-638.
[14] 王苏睿, 胡根, 邵国益. A 型肉毒杆菌毒素在腹腔开放后腹壁缺损修复中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 649-653.
[15] 王浩源, 汪海洋, 孙建明, 陈以宽, 祁小桐, 唐博. 腹腔镜与开放修补对肝硬化腹外疝患者肝功能及凝血的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 654-659.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?