切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 80 -84. doi: 10.3877/cma.j.issn.1674-392X.2021.01.019

所属专题: 文献

基础论著

不同组织来源生物补片降解性能的比较研究
程文悦1, 杨旭霞2, 陈思诗2, 赵美彪2, 张嘉鹏2, 王妍妍2, 张剑2,()   
  1. 1. 200070 上海市静安区闸北中心医院再生医学实验室;200003 上海,海军军医大学长征医院普通外科
    2. 200003 上海,海军军医大学长征医院普通外科
  • 收稿日期:2020-06-18 出版日期:2021-02-18
  • 通信作者: 张剑
  • 基金资助:
    国家自然科学基金(31771043); 国防科技卓越青年科学基金(2019-JCJQ-002); 国防科技基础加强计划(2019-JCJQ-JJ-069); 上海市卫计委科研重点项目(201540388)

Comparative study on the in vivo and in vitro degradation process of biological grafts derived from different tissues

Wenyue Cheng1, Xuxia Yang2, Sishi Chen2, Meibiao Zhao2, Jiapeng Zhang2, Yanyan Wang2, Jian Zhang2,()   

  1. 1. Department of Regenerative Medicine, Shanghai Jingan District Zhabei Central Hospital, Shanghai 200070, China; Department of General Surgery, Shanghai ChangZheng Hospital, the Second Military Medical University, Shanghai 200003, China
    2. Department of General Surgery, Shanghai ChangZheng Hospital, the Second Military Medical University, Shanghai 200003, China
  • Received:2020-06-18 Published:2021-02-18
  • Corresponding author: Jian Zhang
引用本文:

程文悦, 杨旭霞, 陈思诗, 赵美彪, 张嘉鹏, 王妍妍, 张剑. 不同组织来源生物补片降解性能的比较研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2021, 15(01): 80-84.

Wenyue Cheng, Xuxia Yang, Sishi Chen, Meibiao Zhao, Jiapeng Zhang, Yanyan Wang, Jian Zhang. Comparative study on the in vivo and in vitro degradation process of biological grafts derived from different tissues[J/OL]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2021, 15(01): 80-84.

目的

比较3种不同组织来源生物补片的体内外降解性能。

方法

采用Ⅰ型胶原酶对来源于基底膜(BM)与小肠黏膜下层(SIS)复合细胞外基质、单纯小肠黏膜下层、戊二醛化学交联心包(PC)三种生物补片进行体外降解试验,确定各材料的降解率;采用各材料修补大鼠腹壁肌部分层次缺损评估3种补片的降解和组织修复情况。

结果

体外降解试验中,酶溶液作用120 h后,非交联的BM/SIS复合补片和SIS补片完全降解,PC补片的降解率仅为4.3%±1.9%。体内降解试验中,术后2个月,大体观和组织病理切片染色结果证实BM/SIS复合补片完全降解,组织重塑,再生胶原有序;SIS补片完全降解,再生胶原有序性较差;术后12个月,PC补片未见明显降解,未见细胞长入补片中央区。

结论

虽然BM/SIS复合补片的体内外完全降解时间均较短,但其可以实现组织的良好快速重塑,提示BM/SIS复合补片是一种降解与再生同步的组织修复材料。

Objective

Degradation behaviors of biological grafts derived from different tissue were investigated by taking the degradation experiments in vivo and in vitro respectively.

Methods

In vitro, solutions of collagenase type I was used to mimic the degradation of biological grafts including the basement membrane (BM)/small intestine submucosa (SIS) composite extracellular matrix (ECM) graft, SIS and chemical cross-linking pericardium (PC). Wistar mice were used as abdominal degradation model in vivo to evaluate the degradation process and therapeutic effect of biological grafts derived from different tissue.

Results

Results showed that the non-crosslinked BM/SIS and SIS matrix were totally degraded in 120 h for collagenase I in vitro corresponding the degradation rate of the PC patch was only 4.3%±1.9%. BM/SIS matrix was totally degraded in 2 months in vivo, the samples replaced with dense and well-organized collagen fibers. At 2 months post-surgery, SIS also was degraded. While SIS had reconstructed tissue defects with novel-organized collagen fibers. During the experimental period, no degradation was observed and fibrous encapsulations were formed in pericardium repaired samples at 12 months post-surgery.

Conclusion

Results demonstrated the processes of degradation and tissue repair were matched well of BM composite graft with a better degradation rate and tissue regeneration compared with SIS and pericardium.

图1 不同生物补片在胶原酶中的降解速率随时间的变化
图2 不同生物补片降解液中胶原蛋白含量
图3 不同补片植入大鼠腹壁肌缺损后的组织修复大体观
图4 生物补片植入大鼠腹壁肌缺损后不同时间内修复区中央区的组织学染色结果
[1]
杨凯,刘昶. 生物补片的临床应用及研究进展[J]. 医学综述, 2015, 21(11): 1951-1953.
[2]
顾春飞,方胜利. 不同类型生物补片在开放式无张力疝修补术中的回顾性对照研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2019, 13(5): 433-436.
[3]
程文悦,陈金水,刘耀婷,等. 不同组织来源的生物补片修补腹壁肌部分层次缺损的研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2019, 13(3): 198-203.
[4]
梅昕,马凤森,喻炎, 等. 高分子可降解生物材料的降解研究进展[J]. 材料导报, 2016, 30(27): 298-302.
[5]
张鹏,张永红. 羟基丁酸-羟基辛酸共聚物-细胞软骨基质复合支架的制备与体外降解[J]. 中国组织工程研究, 2012, 16(21): 3883-3814.
[6]
Han P, Cheng P, Zhang S, etal. In vitro and in vivo studies on the degradation of high-purity Mg(99.99wt.%) screw with femoral intracondylar fractured rabbit model[J]. Biomaterials, 2015, 64: 57-69.
[7]
杨磊,陈宇,朱良均, 等. 一种新型丝素支架材料的体内降解试验[J]. 蚕业科学, 2011, 37(4): 713-718.
[8]
陈长春,程海,孙康, 等. 生物可吸收性甲壳素纤维增强聚乳酸复合材料体内体外降解性研究[J]. 生物医学工程学杂志, 2000, 17(2): 117-121.
[9]
Poranki D, Whitener W, Howse S, et al. Evaluation of skin regeneration after burns in vivo and rescue of cells after thermal stress in vitro following treatment with a keratin biomaterial[J]. J Biomater Appl, 2014, 29(1): 26-35.
[10]
孙珍珠. 脱细胞猪小肠粘膜下层疝修补片生物学特性研究[D]. 南宁: 广西医科大学, 2017.
[11]
魏清荣,万昌秀,姚红卫, 等. 不同化学方法改性的牛心包体外降解规律的研究[J]. 生物医学工程学杂志, 2003, 20(2): 214-218.
[12]
钟杏霞. 改性牛心包膜脱细胞基质应用于疝气补片的研究[D]. 广州: 暨南大学, 2015.
[13]
贡雯玉,卞欢,吴海虹, 等. 高效液相色谱法检测鲫鱼不同组织中的胶原蛋白含量[J]. 食品科学, 2015, 36(14): 65-69.
[14]
马颂章. 疝和腹壁外科生物学类修补材料再认识[J]. 中国实用外科杂志, 2015, 35(11): 1153-1156.
[15]
Langer R, Vacanti J. Advances in tissue engineering[J]. J Pediatr Surg, 2016, 51(1): 8-12.
[16]
Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction[J]. Semin Cell Dev Biol, 2002, 13(5): 377-383.
[17]
Liang HC, Chang Y, Hsu CK, et al. Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern[J]. Biomaterials, 2004, 25(17): 3541-3552.
[18]
Engvall E. Structure and function of basement membranes[J]. Int J Dev Biol, 1995, 39(5): 781-787.
[19]
Marcal H, Ahrned T, Badylak SF, et al. A comprehensive protein expression profile of extracellular matrix biomaterial derived from porcine urinary bladder[J]. Regen Med, 2012, 7(2): 159-166.
[20]
Liu L, Li D, Wang Y, et al. Evaluation of the biocompatibility and mechanical properties of xenogeneic(porcine) extracellular matrix (ECM) scaffold for pelvic reconstruction[J]. Int Urogynecol J, 2011, 22(2): 221-227.
[21]
Brown B, Lindberg K, Reing J, et al. The basement membrane component of biologic scaffolds derived from extracellular matrix[J]. Tissue Eng Pt A, 2006, 12(3): 519-526.
[22]
Köckerling F, Alam N, Antoniou SA, et al. What is the evidence for the use of biologic or biosynthetic meshes in abdominal wall reconstruction?[J]. Hernia, 2018, 22(2): 249-269.
[1] 刘琰. 真皮基质在烧伤创面修复中的应用[J/OL]. 中华损伤与修复杂志(电子版), 2022, 17(05): 458-458.
[2] 薛昶, 王翔, 冯利, 金鑫, 王治伟. 生物补片盆底修补术和直接缝合术在低位直肠癌患者盆底重建中的应用研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(03): 327-329.
[3] 曹迪, 张玉茹. 经腹腔镜生物补片修补直肠癌根治术后盆底疝1例[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 115-116.
[4] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[5] 周艳, 李盈, 周小兵, 程发辉, 何恒正. 不同类型补片联合Nissen 胃底折叠术修补食管裂孔疝的疗效及复发潜在危险因素[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 528-533.
[6] 仲卫冬, 仲洁, 代京, 程文悦, 张剑. 基底膜生物补片用于腹腔内修补大鼠腹壁缺损手术引导组织再生的研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 139-145.
[7] 李绍杰, 谢奇峰, 李绍春, 杨子昂, 黄永刚, 陈吉彩, 杜舟, 王平, 张剑, 唐健雄. 复合基底膜生物补片应用于腹股沟疝Lichtenstein修补术的随机、对照、多中心临床研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 132-138.
[8] 李宝山, 王荫龙, 张新, 胡巍, 满艺. 腹腔镜下基于疝环缝合的生物补片经腹腹膜前修补术治疗成人腹股沟疝疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(01): 93-96.
[9] 叶晋生, 路夷平, 梁燕凯, 于淼, 冀祯, 贺志坚, 张洪海, 王洁. 腹腔镜下应用生物补片修补直肠术后盆底缺损的疗效[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 688-691.
[10] 李义亮, 买买提·依斯热依力, 王永康, 王志, 赛甫丁·艾比布拉, 李赞林, 克力木·阿不都热依木. 聚丙烯和生物补片对腹壁疝大鼠腹横筋膜组织氧化应激、MMPs及TIMPs的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 125-129.
[11] 宁鹏涛, 俞德梁, 高博欣, 徐蕾, 刘小南. 基于日间管理模式的高龄腹股沟疝Lichtenstein手术25例分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 186-190.
[12] 李宝山, 满艺, 张新, 胡巍, 谢加东, 黄皇, 王荫龙. 生物补片在青少年腹股沟疝经腹腹膜前修补术中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(01): 20-23.
[13] 刘静, 劳金涛, 申英末. 新型非交联与交联生物补片在青少年和青壮年腹股沟疝术中对比研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2022, 16(06): 672-676.
[14] 董国强, 元海成, 张兴洲, 张楠. 生物补片与自固定补片在腹股沟疝修补术中的临床对照研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2022, 16(05): 540-543.
[15] 黄香港, 赵怡欣, 徐易敏, 邵翔宇, 程滔, 嵇振岭, 宋兴超, 李俊生. 生物补片在腹腔镜食管裂孔疝修补术中的应用[J/OL]. 中华胃食管反流病电子杂志, 2023, 10(04): 176-180.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?