[1] |
杨凯,刘昶. 生物补片的临床应用及研究进展[J]. 医学综述, 2015, 21(11): 1951-1953.
|
[2] |
顾春飞,方胜利. 不同类型生物补片在开放式无张力疝修补术中的回顾性对照研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2019, 13(5): 433-436.
|
[3] |
程文悦,陈金水,刘耀婷,等. 不同组织来源的生物补片修补腹壁肌部分层次缺损的研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2019, 13(3): 198-203.
|
[4] |
梅昕,马凤森,喻炎, 等. 高分子可降解生物材料的降解研究进展[J]. 材料导报, 2016, 30(27): 298-302.
|
[5] |
张鹏,张永红. 羟基丁酸-羟基辛酸共聚物-细胞软骨基质复合支架的制备与体外降解[J]. 中国组织工程研究, 2012, 16(21): 3883-3814.
|
[6] |
Han P, Cheng P, Zhang S, etal. In vitro and in vivo studies on the degradation of high-purity Mg(99.99wt.%) screw with femoral intracondylar fractured rabbit model[J]. Biomaterials, 2015, 64: 57-69.
|
[7] |
杨磊,陈宇,朱良均, 等. 一种新型丝素支架材料的体内降解试验[J]. 蚕业科学, 2011, 37(4): 713-718.
|
[8] |
陈长春,程海,孙康, 等. 生物可吸收性甲壳素纤维增强聚乳酸复合材料体内体外降解性研究[J]. 生物医学工程学杂志, 2000, 17(2): 117-121.
|
[9] |
Poranki D, Whitener W, Howse S, et al. Evaluation of skin regeneration after burns in vivo and rescue of cells after thermal stress in vitro following treatment with a keratin biomaterial[J]. J Biomater Appl, 2014, 29(1): 26-35.
|
[10] |
孙珍珠. 脱细胞猪小肠粘膜下层疝修补片生物学特性研究[D]. 南宁: 广西医科大学, 2017.
|
[11] |
魏清荣,万昌秀,姚红卫, 等. 不同化学方法改性的牛心包体外降解规律的研究[J]. 生物医学工程学杂志, 2003, 20(2): 214-218.
|
[12] |
钟杏霞. 改性牛心包膜脱细胞基质应用于疝气补片的研究[D]. 广州: 暨南大学, 2015.
|
[13] |
贡雯玉,卞欢,吴海虹, 等. 高效液相色谱法检测鲫鱼不同组织中的胶原蛋白含量[J]. 食品科学, 2015, 36(14): 65-69.
|
[14] |
马颂章. 疝和腹壁外科生物学类修补材料再认识[J]. 中国实用外科杂志, 2015, 35(11): 1153-1156.
|
[15] |
Langer R, Vacanti J. Advances in tissue engineering[J]. J Pediatr Surg, 2016, 51(1): 8-12.
|
[16] |
Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction[J]. Semin Cell Dev Biol, 2002, 13(5): 377-383.
|
[17] |
Liang HC, Chang Y, Hsu CK, et al. Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern[J]. Biomaterials, 2004, 25(17): 3541-3552.
|
[18] |
Engvall E. Structure and function of basement membranes[J]. Int J Dev Biol, 1995, 39(5): 781-787.
|
[19] |
Marcal H, Ahrned T, Badylak SF, et al. A comprehensive protein expression profile of extracellular matrix biomaterial derived from porcine urinary bladder[J]. Regen Med, 2012, 7(2): 159-166.
|
[20] |
Liu L, Li D, Wang Y, et al. Evaluation of the biocompatibility and mechanical properties of xenogeneic(porcine) extracellular matrix (ECM) scaffold for pelvic reconstruction[J]. Int Urogynecol J, 2011, 22(2): 221-227.
|
[21] |
Brown B, Lindberg K, Reing J, et al. The basement membrane component of biologic scaffolds derived from extracellular matrix[J]. Tissue Eng Pt A, 2006, 12(3): 519-526.
|
[22] |
Köckerling F, Alam N, Antoniou SA, et al. What is the evidence for the use of biologic or biosynthetic meshes in abdominal wall reconstruction?[J]. Hernia, 2018, 22(2): 249-269.
|