切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2018, Vol. 12 ›› Issue (01) : 14 -21. doi: 10.3877/cma.j.issn.1674-392X.2018.01.004

所属专题: 总编推荐 文献

论著

纳米仿生防粘连复合补片修复大鼠腹壁缺损中胶原合成功能的研究
杨晓锋1, 叶小龙1, 黄江龙1, 唐骁1, 郑宗珩1, 魏波1, 陈图锋1, 黄勇1, 罗林波2, 詹泽丰2, 卫洪波1,()   
  1. 1. 510630 广州,中山大学附属第三医院胃肠外科
    2. 510660 广州迈普再生医学科技有限公司
  • 收稿日期:2017-09-28 出版日期:2018-02-15
  • 通信作者: 卫洪波
  • 基金资助:
    广东省科技计划项产学研合作项目(2014B090901066); 广州市科技计划项目产学研协同创新重大专项(2014Y2-00503); 广东省自然科学基金-博士启动(2015A030310052)

Study of collagen synthesis function of repairing abdominal wall defects in rats by nano-bionic and anti-adhesive compound hernia patch

Xiaofeng Yang1, Xiaolong Ye1, Jianglong Huang1, Xiao Tang1, Zongheng Zheng1, Bo Wei1, Tufeng Chen1, Yong Huang1, Linbo Luo2, Zefeng Zhan2, Hongbo Wei1,()   

  1. 1. Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
    2. Medprin Regenerative Medical Technologies Co. Ltd. GuangZhou 510660, China
  • Received:2017-09-28 Published:2018-02-15
  • Corresponding author: Hongbo Wei
  • About author:
    Corresponding author: Wei hongbo, Email:
引用本文:

杨晓锋, 叶小龙, 黄江龙, 唐骁, 郑宗珩, 魏波, 陈图锋, 黄勇, 罗林波, 詹泽丰, 卫洪波. 纳米仿生防粘连复合补片修复大鼠腹壁缺损中胶原合成功能的研究[J]. 中华疝和腹壁外科杂志(电子版), 2018, 12(01): 14-21.

Xiaofeng Yang, Xiaolong Ye, Jianglong Huang, Xiao Tang, Zongheng Zheng, Bo Wei, Tufeng Chen, Yong Huang, Linbo Luo, Zefeng Zhan, Hongbo Wei. Study of collagen synthesis function of repairing abdominal wall defects in rats by nano-bionic and anti-adhesive compound hernia patch[J]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2018, 12(01): 14-21.

目的

评估纳米仿生、防粘连复合型疝补片修复腹壁疝的胶原蛋白合成功能的优劣,为临床提供实验依据。

方法

选择成年SD雄性大鼠90只,随机分为3组:纳米仿生、防粘连复合型疝补片(nano-bionic and anti-adhesive compound hernia patch,NT)组,聚丙烯补片(polypropylene patch,PP)组及聚酯补片(polyester patch,PE)组,构建腹壁疝模型。根据分组将大小约3 cm× 2 cm的3组补片缝合于腹壁缺损处。术后观察大鼠一般情况,分别于术后4、6、8周处死大鼠各10只,大体观察腹腹壁手术区域胶原组织形成情况;剪取补片及其周围组织进行组织学观察,分析胶原蛋白表达情况,并进行Western bolt分析各组腹壁修复区域Ⅰ型胶原蛋白及Ⅲ型胶原蛋白表达量。

结果

各组大鼠术后一般情况均良好,未出现死亡等不良事件;腹壁手术区域,NT组触感柔软,异物感较少,未见明显腹腔脏器突出,纤维组织生长情况良好;PP组触感较僵硬,皮下可见大量新生血管长入,异物感较重,纤维组织生长情况一般;PE组大鼠腹壁修复区触感僵硬,皮下可见较多新生血管长入,纤维组织生长较好。组织学观察:术后各个时间点,NT组修补效果优于PP、PE组,NT组Ⅰ型胶原表达更多,Ⅲ胶原表达更少,比例更加合理,纤维结构更加成熟稳定。组织蛋白含量:随着时间推移,术后各组Ⅰ型胶原蛋白随着时间进展逐步增加,而且NT组在各个时间点明显高于PP组及PE组,差异有统计学意义;术后6周及术后8周NT组的Ⅰ/Ⅲ型胶原蛋白比例基本保持在4∶1左右,较术后4周明显增加,而且在各个时间点上NT组均高于PP、PE组,差异有统计学意义。

结论

在常规腹壁缺损无张力修补术过程中,NT补片在组织重构过程中比PP及PE补片更早形成成熟稳定的纤维结构,提供更加稳固的修复效果,适用于目前常规的腹壁疝修补,尤其是巨大腹壁缺损引起的腹壁疝。

Objective

To evaluate the advantages and disadvantages of nano-bionic and anti-adhesive compound hernia patch to repair the collagen synthesis function of the abdominal wall hernia.

Methods

90 adult male SD rats were randomly divided into 3 groups: NT group (nano-bionic and anti-adhesive compound hernia patch), PP group (polypropylene patch) and PE group (polyester patch), building a model of the abdominal wall hernia. The patch approximately 3 cm×2 cm in size was sutured to theabdominal wall defect. After the postoperative observation of rats, 10 rats were executed at 4, 6 and 8 weeks after surgery, respectively, and the formation of collagen tissue in the abdominal wall was observed. Shearing patch and its surrounding tissues for histologic observation and analysis of collagen protein expression, and Western bolt analysis of type I collagen and typeⅢ collagen expressionin abdominal wall repair area.

Results

The postoperative general conditions of rats were good, and there were no adverse events such as death. In the area of abdominal wall surgery, the NT group had soft touch and less foreign body sensation, and no obvious abdominal organ protruding, and the fibrous tissue was growingwell. The feeling of the PP group was more rigid, and there were a large number of subcutaneous neovascularization. The abdominal wall repair area of the PE group was stiff, and the growth of the fibrous tissue was better. Histological observation: at each time point, the repair effect of NT group was better than that of PP group and PE group. NT group had more type I collagen expression, and less typeⅢ collagen expression. It had more reasonableratio of typeⅠ/Ⅲ collagen, more mature and stable fiber structure. Tissue protein: TypeⅠ collagen gradually increased over time in each group; At each time points, the NT group was obviously higher than that of PP group and PE group; At 6 weeks and 8 weeks after surgery, the ratio of typeⅠ/Ⅲ collagen in the NT group was about 4∶1, significantly increasingcompared with 4 weeks after the operation.

Conclusion

In the process of routine tension-free repair of abdominal wall defect, the nano bionic, antiblocking compound hernia patch has earlier mature and stable fiber structurethan polypropylene patch and polyester patch, providing a more solid repair effect. It is applicable to the conventional abdominal wall hernia repair, especially in large abdominal wall defect caused by abdominal wall hernia.

图1 各组补片修补腹壁缺损模型
图2 各组疝修补效果图
图3 术后4周大鼠腹壁修复区组织生长情况
图4 各组术后Ⅰ型胶原表达情况
图5 各组术后Ⅲ型胶原表达情况
图6 各组术后各个时间点Ⅰ型胶原表达含量
图7 各组术后各个时间点Ⅲ型胶原表达含量
图8 各组术后Ⅰ/Ⅲ型胶原蛋白表达含量比率
[1]
Lichtemtcin IL,Shulmah AG,Amid PK. The tension. free henioplasty [J]. Surg, 1989, 157: 188.
[2]
Bilsel Y,Abci I. The search for ideal hernia repair; mesh materials and types[J]. Int J Surg, 2012, 10(6): 317-321.
[3]
郭仁宣, 苏东明. 腹外疝外科治疗[M]. 沈阳: 辽宁科学技术出版社, 2003: 242-247.
[4]
Brown CN,Finch JG. Which mesh for hernia repair?[J]. Ann R Coll Surg Engl, 2010, 92(4): 272-278.
[5]
Klinge U,Junge K,Stumpf M, et al. Functional andmorphological evaluation of a low-weight, monofilament polypropylene mesh for herniarepair[J]. J Biomed Mater Res, 2002, 63(2): 129-136.
[6]
Klinge U,Klosterhalfen B,Birkenhauer V, et al. Impact of polymer pore size on the interface scar formation in a rat model[J]. J Surg Res, 2002, 103(2): 208-214.
[7]
Junge K1,Binnebösel M,von Trotha KT, et al. Mesh biocompatibility: effects of cellular inflammation and tissueremodeling[J]. Langenbecks Arch Surg, 2012, 397(2): 255-270.
[8]
Higgins DM,Basaraba RJ,Hohnbaum AC, et al. Localized immunosuppressive environment in the foreign body response toimplanted biomaterials[J]. Am J Pathol, 2009, 175(1): 161-170.
[9]
Stadelmann WK,Digenis AG,Tobin GR. Physiology and healing dynamics of chroniccutaneous wounds[J]. AmJ Surg, 1998, 176(2A Suppl): 26S-38S.
[10]
Hurme T,Kalimo H,Sandberg M, et al. Localization of type and III collagen and fibronectin product ion in in jured gastrocnemius muscle[J]. Lab Invest, 1991, 64(1): 76-84.
[11]
Broughton G,Janis JE,Attinger CE. The basic science ofwound healing[J]. Plast Reconstr Surg, 2006, 117(7 Suppl): 12S-34S.
[12]
Rhodes NP,Hunt JA,Williams DF. Macrophage subpopulation differentiation by stimulation with biomaterials[J]. J Biomed Mater Res, 1997, 37(4): 481-488.
[13]
Charo IF,Ransohoff RM. The many roles of chemokinesand chemokine receptors in inflammation[J]. N Engl J Med, 2006, 354(6): 610-621.
[14]
Kyriakides TR,Foster MJ,Keeney GE, et al. The CC chemokine ligand, CCL2/MCP1, participates inmacrophage fusion and foreign body giant cell formation[J]. Am J Pathol, 2004, 165(6): 2157-2166.
[15]
Jones JA,Chang DT,Meyerson H, et al. Proteomic analysis and quantification of cytokines and chemokines from biomaterialsurface- adherent macrophages and foreign body giant cells[J]. J Biomed Mater Res A, 2007, 83(3): 585-596.
[16]
Esche C,Stellato C,Beck LA. Chemokines: key players in innate andadaptive immunity[J]. J Invest Dermatol, 2005, 125(4): 615-628.
[17]
DeFife KM,Jenney CR,McNally AK, et al. Interleukin-13induces human monocyte/macrophage fusion and macrophage mannose receptor expression[J]. J Immunol, 1997, 158(7): 3385-3390.
[18]
Helming L,Gordon S. Macrophage fusion induced by IL-4 alternativeactivation is a multistage process involving multiple target molecules[J]. Eur J Immunol, 2007, 37(1): 33-42.
[19]
Jones JA,Dadsetan M,Collier TO, et al. Macrophage behavior on surface-modified polyurethanes[J]. J Biomater Sci Polym Ed, 2004, 15(5): 567-584.
[20]
Martin P,Leibovich SJ. Inflammatory cells during wound repair: the good, the bad and the ugly[J]. Trends Cell Biol, 2005, 15(11): 599-607.
[21]
Li AG,Quinn MJ,Siddiqui Y, et al. Elevation of transforming growth factor beta(TGFbeta) and its downstream mediators in subcutaneous foreign body capsule tissue[J]. J Biomed Mater Res A, 2007, 82(2): 498-508.
[22]
Higgins DM,Basaraba RJ,Hohnbaum AC, et al. Localized immunosuppressiveenvironment in the foreign body response to implanted biomaterials[J]. Am J Pathol, 2009, 175(1): 161-170.
[23]
Ward WK,Li AG,Siddiqui Y, et al. Increased expression of Interleukin-13 and connective tissue growth factor, and their potential roles during foreign body encapsulation of subcutaneous implants[J]. J Biomater Sci Polym Ed, 2008, 19(8): 1065-1072.
[24]
Kruegel J,Miosge N. Basement membrane components are key players in pecialized extracellular matrices[J]. Cell Mol Life Sci, 2010, 67(17): 2879-2895.
[25]
Thorpe CT,Birch HL,Clegg PD, et al. The role of the non-collagenous matrix in tendon function[J]. Internat J Experiment Pathol, 2013, 94(4): 248-259.
[26]
Kadler KE,Baldock C,Bella J, et al. Collagens at a glance[J]. J Cell Sci, 2007, 120(Pt 12): 1955-1958.
[27]
嵇振岭,李俊生. 疝修补材料的类型、研究工作进展与应用选择[J]. 东南大学学报(医学版), 2009, 28(5): 451-454.
[28]
Henkel W,Glanville RW. CCovalent crosslinking between molecules of type I and type III collagen. The involvement of the N-terminal, nonhelical regions of the alpha 1(I) and alpha 1(III) chains in the formation of intermolecular crosslinks[J]. Eur J Biochem, 1982, 122(1): 205-213.
[29]
Kadler KE,Holmes DF,Trotter JA, et al. Collagen fibril formati-on[J]. Biochem J, 1996, 316(Pt 1): 1-11.
[30]
Fleischmajer R,Perlish JS,Burgeson RE, et al. Type I and type III collagen interactions during fibrillogenesis[J]. Ann N Y Acad Sci, 1990, 580: 161-175.
[31]
Junge K. Rosch R, Bialasinski L, et a1. Persistent extracellular matrix remodelling at the interface to polymers used for hernia remr[J]. Eur Surg Res, 2003, 35(6): 497-504.
[32]
Rosch R,Junge K,Knops M, et al. Analysis of collagen-interacting proteins in patients with incisional hernias[J]. Langen-becks Arch Surg, 2003, 387(11-12): 427-432.
[33]
Junge K,Klinge U,Rosch R, et al. Decreased collagen type I/III ratio in patients with recurring hernia after implantation of allo-plastic prostheses[J]. Langenbecks Arch Surg, 2004, 389(1): 17-22.
[34]
Klinge U,Si ZY,Zheng H, et al. Abnormal collagen I to III distri-bution in the skin of patients with incisional hernia[J]. Eur Surg Res, 2000, 32(1): 43-48.
[35]
Klinge U,Si Z,Zheng H, et al. Collagen I/III and matrix metallo-proteinases(MMP) 1 and 13 in the fascia of patients with inci-sional hernias[J]. J Invest Surg, 2001, 14(1): 47-54.
[36]
Si Z,Bhardwaj R,Rosch R, et al. Impaired balance of type I andtype III procollagen mRNA in cultured fibroblasts of patients with incisional hernia[J]. Surgery, 2002, 131(3): 324-331.
[37]
Dizerega GS,Rodgers K. The Peritoneum[M]. New York: Springer-Verlag, 1990.
[1] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[2] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[3] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[4] 魏强, 张明祥, 陈强谱, 孙宝房. 增味小承气汤对梗阻性黄疸大鼠胃肠道动力的影响[J]. 中华普通外科学文献(电子版), 2023, 17(04): 267-270.
[5] 张起尧, 刘子文. 复杂腹壁疝的解剖和生物力学基础[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 674-676.
[6] 孔博, 张璟, 吕珂. 超声技术在复杂腹壁疝诊治中的作用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 670-673.
[7] 刘琪, 王殿琛, 符洋. 复杂腹壁疝诊疗问题与要点[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 504-508.
[8] 张升敏, 黄健斌, 陈亮, 马克强. Ⅰ、Ⅲ型胶原蛋白在成人腹股沟斜疝及直疝患者腹横筋膜和疝囊的表达[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 516-521.
[9] 喻海波, 张春军. 腹腔镜腹腔内补片修补术治疗腹壁疝补片固定方法的选择与应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(03): 274-279.
[10] 霍蒙蒙, 马春方, 商玉环. 延续性护理在腹壁疝日间手术中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(03): 359-361.
[11] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[12] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 秦维, 王丹, 孙玉, 霍玉玲, 祝素平, 郑艳丽, 薛瑞. 血清层粘连蛋白、Ⅳ型胶原蛋白对代偿期肝硬化食管胃静脉曲张出血的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 447-451.
[15] 戚晓阳, 杨平, 杜忠秋, 邱旭升, 汤黎明, 陈一心. 袖状胃切除术对肥胖合并2型糖尿病大鼠模型骨密度的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 102-108.
阅读次数
全文


摘要