[1] |
Kalaba S, Gerhard E, Winder JS, et al. Design Strategies and Applications of Biomaterials and Devices for Hernia Repair[J]. Bioact Mater, 2016, 1(1): 2-17.
|
[2] |
申英末, 孙蕊, 陈杰, 等. 我国疝和腹壁外科研究进展及未来展望[J]. 中华消化外科杂志, 2023, 22(1): 100-104.
|
[3] |
Poulose BK, Shelton J, Phillips S, et al. Epidemiology and cost of ventral hernia repair: making the case for hernia research[J]. Hernia, 2012, 16(2): 179-183.
|
[4] |
Gillion JF, Sanders D, Miserez M, et al. The economic burden of incisional ventral hernia repair: a multicentric cost analysis[J]. Hernia, 2016, 20(6): 819-830..
|
[5] |
Schmidt A, Taylor D. Erosion of soft tissue by polypropylene mesh products[J]. J Mech Behav Biomed Mater, 2021, 115: 104281.
|
[6] |
Zogbi L, Trindade EN, Trindade MR. Comparative study of shrinkage, inflammatory response and fibroplasia in heavyweight and lightweight meshes[J]. Hernia, 2013, 17(6): 765-772.
|
[7] |
Kokotovic D, Bisgaard T, Helgstrand F. Long-term Recurrence and Complications Associated With Elective Incisional Hernia Repair[J]. JAMA, 2016, 316(15): 1575-1582.
|
[8] |
Sharma R, Fadaee N, Zarrinkhoo E, et al. Why we remove mesh[J]. Hernia, 2018, 22(6): 953-959.
|
[9] |
Saha T, Houshyar S, Ranjan Sarker S, et al. Surface-Functionalized Polypropylene Surgical Mesh for Enhanced Performance and Biocompatibility[J]. ACS Applied Bio Materials, 2019, 2(12): 5905-5915.
|
[10] |
Liu Z, Wei N, Tang R. Functionalized Strategies and Mechanisms of the Emerging Mesh for Abdominal Wall Repair and Regeneration[J]. ACS Biomater Sci Eng, 2021, 7(6): 2064-2082.
|
[11] |
Rosen MJ. Polyester-based mesh for ventral hernia repair: is it safe?[J]. Am J Surg, 2009, 197(3): 353-359.
|
[12] |
Scimone ML, Cote LE, Reddien PW. Orthogonal muscle fibres have different instructive roles in planarian regeneration[J]. Nature, 2017, 551(7682): 623-628.
|
[13] |
Yin X, Hao Y, Lu Y, et al. Bio-Multifunctional Hydrogel Patches for Repairing Full-Thickness Abdominal Wall Defects[J]. Adv Funct Mater, 2021, 31(41): 2105614.
|
[14] |
Harrison JH. A teflon weave for replacing tissue defects[J]. Surg Gynecol Obstet, 1957, 104(5): 584-590.
|
[15] |
Usher FC. Hernia repair with Marlex mesh. An analysis of 541 cases[J]. Arch Surg, 1962, 84: 325-328.
|
[16] |
Sanders DL, Kingsnorth AN. Prosthetic mesh materials used in hernia surgery[J]. Expert Rev Med Devices, 2012, 9(2): 159-179.
|
[17] |
Law NW, Ellis H. A comparison of polypropylene mesh and expanded polytetrafluoroethylene patch for the repair of contaminated abdominal wall defects--an experimental study[J]. Surgery, 1991, 109(5): 652-655.
|
[18] |
Martin DP, Badhwar A, Shah DV, et al. Characterization of poly-4-hydroxybutyrate mesh for hernia repair applications[J]. J Surg Res, 2013, 184(2): 766-773.
|
[19] |
Hjort H, Mathisen T, Alves A, et al. Three-year results from a preclinical implantation study of a long-term resorbable surgical mesh with time-dependent mechanical characteristics[J]. Hernia, 2012, 16(2): 191-197.
|
[20] |
Brismar B, Pettersson N. Polyglycolic acid(Dexon) mesh graft for abdominal wound support in healing-compromised patients[J]. Acta Chir Scand, 1988, 154(9): 509-510.
|
[21] |
Marmon LM, Vinocur CD, Standiford SB, et al. Evaluation of absorbable polyglycolic acid mesh as a wound support[J]. J Pediatr Surg, 1985, 20(6): 737-742.
|
[22] |
Tyrell J, Silberman H, Chandrasoma P, et al. Absorbable versus permanent mesh in abdominal operations[J]. Surg Gynecol Obstet, 1989, 168(3): 227-232.
|
[23] |
Ghetti M, Papa V, Deluca G, et al. Histological and ultrastructural evaluation of human decellularized matrix as a hernia repair device[J]. Ultrastruct Pathol, 2018, 42: 32-38.
|
[24] |
Harth KC, Rosen MJ. Major complications associated with xenograft biologic mesh implantation in abdominal wall reconstruction[J]. Surg Innov, 2009, 16: 324-329.
|
[25] |
Kamarajah SK, Chapman SJ, Glasbey J, et al. Systematic review of the stage of innovation of biological mesh for complex or contaminated abdominal wall closure[J]. BJS Open, 2018, 2: 371-380.
|
[26] |
Garvey PB, Giordano SA, Baumann DP, et al. Long-Term Outcomes after Abdominal Wall Reconstruction with Acellular Dermal Matrix[J]. J Am Coll Surg, 2017, 224: 341-350.
|
[27] |
Hassan AM, Franco CM, Shah NR, et al. Outcomes of Complex Abdominal Wall Reconstruction with Biologic Mesh in Patients with 8 Years of Follow-Up[J]. World J Surg, 2023, 47: 3175-3181.
|
[28] |
Rosen MJ, Krpata DM, Petro CC, et al. Biologic vs Synthetic Mesh for Single-stage Repair of Contaminated Ventral Hernias: A Randomized Clinical Trial[J]. JAMA Surg, 2022, 157: 293-301.
|
[29] |
Harris HW, Primus F, Young C, et al. Preventing Recurrence in Clean and Contaminated Hernias Using Biologic Versus Synthetic Mesh in Ventral Hernia Repair: The PRICE Randomized Clinical Trial[J]. Ann Surg, 2021, 273: 648-655.
|
[30] |
Houshyar S, Sarker A, Jadhav A, et al. Polypropylene-nanodiamond composite for hernia mesh[J]. Mater Sci Eng C Mater Biol Appl, 2020, 111: 110780.
|
[31] |
Zhao Y, Li X, Sun N, et al. Injectable Double Crosslinked Hydrogel-Polypropylene Composite Mesh for Repairing Full-Thickness Abdominal Wall Defects[J]. Adv Healthc Mater, 2024, e2304489.
|
[32] |
Hu H, Sun H, Jiang Z, et al. Study on repair of abdominal wall defect rats with hernia mesh coated with chitosan-based photosensitive hydrogel[J]. Carbohydr Polym, 2022, 291: 119577.
|
[33] |
Liu P, Fu K, Zeng X, et al. Fabrication and Characterization of Composite Meshes Loaded with Antimicrobial Peptides[J]. ACS Appl Mater Interfaces, 2019, 11: 24609-24617.
|
[34] |
Lu S, Hu W, Zhang Z, et al. Sirolimus-coated, poly(L-lactic acid)-modified polypropylene mesh with minimal intra-peritoneal adhesion formation in a rat model[J]. Hernia, 2018, 22: 1051-1060.
|
[35] |
Fann SA, Terracio L, Yan W, et al. A model of tissue-engineered ventral hernia repair[J]. J Invest Surg, 2006, 19: 193-205.
|
[36] |
Kapischke M, Prinz K, Tepel J, et al. Precoating of alloplastic materials with living human fibroblasts--a feasibility study[J]. Surg Endosc, 2005, 19: 791-797.
|
[37] |
Akbaba S, Atila D, Keskin D, et al. Multilayer fibroin/chitosan oligosaccharide lactate and pullulan immunomodulatory patch for treatment of hernia and prevention of intraperitoneal adhesion[J]. Carbohydr Polym, 2021, 265: 118066.
|
[38] |
Qiao Y, Zhang Q, Wang Q, et al. Synergistic Anti-inflammatory Coating "Zipped Up" on Polypropylene Hernia Mesh[J]. ACS Appl Mater Interfaces, 2021; 13: 35456-35468.
|
[39] |
Labay C, Canal JM, Modic M, et al. Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization[J]. Biomaterials, 2015, 71: 132-144.
|
[40] |
East B, Plencner M, Kralovic M, et al. A polypropylene mesh modified with poly-ε-caprolactone nanofibers in hernia repair: large animal experiment[J]. Int J Nanomedicine, 2018, 13: 3129-3143.
|
[41] |
Liang W, He W, Huang R, et al. Peritoneum-Inspired Janus Porous Hydrogel with Anti-Deformation, Anti-Adhesion, and Pro-Healing Characteristics for Abdominal Wall Defect Treatment[J]. Adv Mater, 2022, 34(15): e2108992.
|
[42] |
Jiao Y, Li C, Li S, et al. Hernia Mesh with Biomechanical and Mesh-Tissue Interface Dual Compliance for Scarless Abdominal Wall Reconstruction[J]. Adv Funct Mater, 2023, 33: 2305714.
|
[43] |
Su J, Liu B, He H, et al. Engineering High Strength and Super-Toughness of Unfolded Structural Proteins and their Extraordinary Anti-Adhesion Performance for Abdominal Hernia Repair[J]. Adv Mater, 2022, 34: e2200842.
|
[44] |
Shin CS, Cabrera FJ, Lee R, et al. 3D-Bioprinted Inflammation Modulating Polymer Scaffolds for Soft Tissue Repair[J]. Adv Mater, 2021, 33: e2003778.
|