切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 633 -637. doi: 10.3877/cma.j.issn.1674-392X.2025.06.006

专家论坛

从宏观支撑到微观调控:重视力学微环境在疝修补材料设计中的应用
吴茜, 杨董超, 董文培, 宋致成, 顾岩()   
  1. 200040 上海,复旦大学附属华东医院普外科
  • 收稿日期:2025-11-17 出版日期:2025-12-18
  • 通信作者: 顾岩
  • 基金资助:
    国家自然科学基金(82170526、82570602); 教育部高校产学研创新基金(2024LC013); 复旦大学重大先导项目(IDF163008)

From macroscopic support to microscopic modulation: Emphasizing the role of the mechanical microenvironment in the design of hernia repair materials

Qian Wu, Dongchao Yang, Wenpei Dong, Zhicheng Song, Yan Gu()   

  1. Department of General Surgery, Huadong Hospital, Fudan University, Shanghai 200040, China
  • Received:2025-11-17 Published:2025-12-18
  • Corresponding author: Yan Gu
引用本文:

吴茜, 杨董超, 董文培, 宋致成, 顾岩. 从宏观支撑到微观调控:重视力学微环境在疝修补材料设计中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(06): 633-637.

Qian Wu, Dongchao Yang, Wenpei Dong, Zhicheng Song, Yan Gu. From macroscopic support to microscopic modulation: Emphasizing the role of the mechanical microenvironment in the design of hernia repair materials[J/OL]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2025, 19(06): 633-637.

腹壁缺损修复重建不仅需要恢复结构的完整性,更需实现腹壁力学与功能的协调。传统腹壁缺损修补材料以宏观力学支撑为核心,但在修复过程中的过度强化常导致组织僵硬与功能障碍。近年来,对宏观与微观力学因素在组织再生中的协同作用的认识逐渐得到加强。宏观层面上,材料需具备与腹壁应力匹配的强度与顺应性,以维持结构稳定与张力平衡;微观层面上,材料通过调控基质刚度、黏弹性与外界应力分布,塑造细胞可感知的力学微环境,从而影响细胞黏附、骨架重构与分化行为。力学信号通过整合素/黏着斑激酶、机械敏感通路及转录共激活蛋白等实现感知与转导,最终调控组织再生与功能重塑。对腹壁缺损修复力学环境认识的深入为未来新型力学可调型再生支架的设计与应用提供了重要的方向。

The repair and reconstruction of abdominal wall defects requires not only the restoration of structural continuity but also the reestablishment of coordinated abdominal wall mechanics and function. Conventional abdominal wall defect repair materials primarily focus on providing macroscopic mechanical support; however, excessive reinforcement during the healing process often leads to tissue stiffness and functional impairment. In recent years, the synergistic roles of macroscopic and microscopic mechanical factors in tissue regeneration have received increasing attention. At the macroscopic level, materials must possess strength and compliance that match with the native abdominal wall to maintain structural stability and tension balance. At the microscopic level, materials regulate matrix stiffness, viscoelasticity, and external stress distribution to create a mechanically defined microenvironment that is perceptible to cells, thereby influencing cell adhesion, cytoskeletal remodeling, and lineage-specific differentiation. Mechanical signals are sensed and transduced through pathways such as Integrin/ focal adhesion kinase, mechanosensitive channels, and transcriptional coactivators, ultimately orchestrating tissue regeneration and functional remodeling. A deeper understanding of the mechanical environment in abdominal wall defect repair provides important insights for the development and application of next-generation mechanically tunable regenerative scaffolds.

[1]
Gu Y, Wang P, Li H, et al. Chinese expert consensus on adult ventral abdominal wall defect repair and reconstruction[J]. Am J Surg, 2021, 222(1): 86-98.
[2]
Liang K, Ding C, Li J, et al. A Review of Advanced Abdominal Wall Hernia Patch Materials[J]. Adv Healthc Mater, 2024, 13(10): e2303506.
[3]
刘德琦, 刘姗, 袁浩然, 等. 疝补片材料研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(5): 582-588.
[4]
Li Z, Dong W, Ren J, et al. Mechanically Trained Calcium Alginate Ionic Hydrogels for Enhanced Abdominal Wall Defect Repair[J]. Adv Funct Mater, 2025, 35(22): 2419151.
[5]
汤福鑫, 黄浩男, 马宁, 等. 疝补片的发展:从人工补片到智能材料[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(4): 365-368.
[6]
陈双, 周太成. 腹壁的力学原理[J]. 中国实用外科杂志, 2021, 41(4): 371-373, 378.
[7]
陈双, 江志鹏. 切口疝、腹壁力学与外科技术[J]. 中国普通外科杂志, 2023, 32(10): 1453-1459.
[8]
See CW, Kim T, Zhu D. Hernia Mesh and Hernia Repair: A Review[J]. Eng Regen, 2020, 1(1): 19-33.
[9]
陈双, 江志鹏. 再论腹壁的力学原理--各向异性的临床与思考[J]. 中国实用外科杂志, 2022, 42(2): 159-162.
[10]
Deeken CR, Lake SP. Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair[J]. J Mech Behav Biomed Mater, 2017, 74: 411-427.
[11]
耿钊宁, 殷东明, 毛琳, 等. 疝补片的微观结构和力学性能研究[J]. 国际生物医学工程杂志, 2023, 46(4): 300-305.
[12]
Todros S, Pachera P, Baldan N, et al. Computational modeling of abdominal hernia laparoscopic repair with a surgical mesh[J]. Int J Comput Assist Radiol Surg, 2018, 13(1): 73-81.
[13]
Xu X, Zhang G, Zhao J, et al. From mechanotransduction to applications: Three-dimensional mechanical stimuli in cell fate regulation[J]. Chem Eng J, 2025, 524: 168839.
[14]
Atcha H, Choi YS, Chaudhuri O, et al. Getting physical: Material mechanics is an intrinsic cell cue[J]. Cell Stem Cell, 2023, 30(6): 750-765.
[15]
Wang S, Yan H, Fang B, et al. A myogenic niche with a proper mechanical stress environment improves abdominal wall muscle repair by modulating immunity and preventing fibrosis[J]. Biomaterials, 2022, 285: 121519
[16]
Wang N, Lu Y, Rothrauff BB, et al. Mechanotransduction pathways in articular chondrocytes and the emerging role of estrogen receptor-α[J]. Bone Res, 2023, 11(1): 13.
[17]
Yuan X, Shi J, Kang Y, et al. Piezoelectricity, Pyroelectricity, and Ferroelectricity in Biomaterials and Biomedical Applications[J]. Adv Mater, 2024, 36(3): e2308726.
[18]
Zhang Y, Le Friec A, Zhang Z, et al. Electroactive biomaterials synergizing with electrostimulation for cardiac tissue regeneration and function-monitoring[J]. Mater Today, 2023, 70: 237-272.
[19]
Ferrigno B, Bordett R, Duraisamy N, et al. Bioactive polymeric materials and electrical stimulation strategies for musculoskeletal tissue repair and regeneration[J]. Bioact Mater, 2020, 5(3): 468-485.
[20]
Xin F, Lu Y. A nonlinear acoustomechanical field theory of polymeric gels undergoing large deformation coupled with diffusion mass transport of solvent[J]. Int J Solids Struct, 2017, 112: 133-142.
[21]
Shakeri-Zadeh A, Bulte JWM. Imaging-guided precision hyperthermia with magnetic nanoparticles[J]. Nat Rev Bioeng, 2025, 3(3): 245-260.
[22]
Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 2006, 126(4): 677-689.
[23]
Ji C, Huang Y. Durotaxis and negative durotaxis: where should cells go?[J]. Commun Biol, 2023, 6(1): 1169.
[24]
Chaudhuri O, Cooper-White J, Janmey PA, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour[J]. Nature, 2020, 584(7822): 535-546.
[25]
Shi N, Wang J, Tang S, et al. Matrix Nonlinear Viscoelasticity Regulates Skeletal Myogenesis through MRTF Nuclear Localization and Nuclear Mechanotransduction[J]. Small, 2024, 20(9): e2305218.
[26]
Fang Q, Wang D, Lin W, et al. Highly Stretchable Piezoelectric Elastomer for Accelerated Repairing of Skeletal Muscles Loss[J]. Adv Funct Mater, 2024, 34(30): 2313055.
[27]
Roloson EB, Jung WH, McNamara SL, et al. Collagen Scaffold Viscoelasticity Regulates Muscle Cell Phenotype[J]. Adv Healthc Mater, 2025, e02775.
[28]
Zhu Y, Yu X, Liu H, et al. Strategies of functionalized GelMA-based bioinks for bone regeneration: Recent advances and future perspectives[J]. Bioact Mater, 2024, 38: 346-373.
[29]
Ma Y, Gong J, Li Q, et al. Triple-Mechanism Enhanced Flexible SiO2 Nanofiber Composite Hydrogel with High Stiffness and Toughness for Cartilaginous Ligaments[J]. Small, 2024, 20(25): e2310046.
[30]
Liu J, Zhao W, Ma Z, et al. Cartilage-bioinspired tenacious concrete-like hydrogel verified via in-situ testing[J]. Nat Commun, 2025, 16(1): 2309.
[31]
Li L, Wang S, You C, et al. Hydrogels mimicking the viscoelasticity of extracellular matrix for regenerative medicine: Design, application, and molecular mechanism[J]. Chem Eng J, 2024, 498: 155206.
[32]
Yang B, Wei K, Loebel C, et al. Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics[J]. Nat Commun, 2021, 12(1): 3514.
[33]
Chang TL, Borelli AN, Cutler AA, et al. Myofibers cultured in viscoelastic hydrogels reveal the effects of integrin-binding and mechanosensing on muscle satellite cells[J]. Acta Biomater, 2025, 192: 48-60.
[34]
Jain K, Kishan K, Minhaj RF, et al. Immobile Integrin Signaling Transit and Relay Nodes Organize Mechanosignaling through Force-Dependent Phosphorylation in Focal Adhesions[J]. ACS Nano, 2025, 19(2): 2070-2088.
[35]
Zhang X, Wang T, Zhang Z, et al. Electrical stimulation system based on electroactive biomaterials for bone tissue engineering[J]. Mater Today, 2023, 68: 177-203.
[36]
Bian X, Liu X, Zhou M, et al. Mechanical stimulation promotes fibrochondrocyte proliferation by activating the TRPV4 signaling pathway during tendon-bone insertion healing: CCN2 plays an important regulatory role[J]. Burns Trauma, 2024, 12: tkae028.
[37]
Huang M, Li W, Sun Y, et al. Janus piezoelectric adhesives regulate macrophage TRPV1/Ca2+/cAMP axis to stimulate tendon-to-bone healing by multi-omics analysis[J]. Bioact Mater, 2025, 50: 134-151.
[38]
Driskill JH, Pan D. Control of stem cell renewal and fate by YAP and TAZ[J]. Nat Rev Mol Cell Biol, 2023, 24(12): 895-911.
[39]
Silver JS, Günay KA, Cutler AA, et al. Injury-mediated stiffening persistently activates muscle stem cells through YAP and TAZ mechanotransduction[J]. Sci Adv, 2021, 7(11): eabe4501.
[40]
Kersey AL, Cheng DY, Deo KA, et al. Stiffness assisted cell-matrix remodeling trigger 3D mechanotransduction regulatory programs[J]. Biomaterials, 2024, 306: 122473.
[1] 潘芮, 李守强, 陈双, 付昕, 王卓, 冷晓萍. 应用RVP技术定量评估H型高血压患者颈动脉斑块特征及其与缺血性脑卒中风险的相关性[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 824-831.
[2] 谭灵屏, 余川颖, 张驰, 高雳, 赵川江. 线粒体动力学:炎症微环境中Th17/Treg细胞平衡调控机制的新视角[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(04): 240-246.
[3] 王平, 黄永刚, 金华. 腹壁外科新概念:腹壁核心健康[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(06): 609-613.
[4] 李健文, 乐飞, 李金东. 增强视野全腹膜外修补术(e-TEP)的起源和进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(06): 623-628.
[5] 彭鹏, 陈杰. 机器人手术在疝和腹壁外科领域国内外应用现状及展望[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(06): 638-644.
[6] 王思懿, 耿苗苗, 王增旭. 手术室中不同术前准备方式对腹壁疝手术效率影响和患者满意度分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(05): 563-566.
[7] 蒋嫒, 缪妙, 陈继明. 经腹壁瘢痕入路妇科单孔腹腔镜手术的理念创建与临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(05): 271-275.
[8] 鄢潇, 胡启明, 黄骁昊. 剖宫产术后腹壁疤痕肌层侵袭性纤维瘤[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(05): 305-307.
[9] 刘书馨. 动静脉内瘘狭窄的血流动力学机制及研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 240-240.
[10] 牛菲菲, 郑全乐, 张亭亭, 张同乐, 李学天, 杨文启. 右美托咪定对慢性硬脑膜下血肿手术的效果研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(05): 288-292.
[11] 张群青, 吴娟, 王妍. 肝硬化门静脉高压症患者肝脏血流动力学指标与门静脉压力梯度的相关性[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 616-620.
[12] 王俊香, 刘洁, 井春艳. 彩色多普勒超声肝门血流在肝硬化食管胃底静脉曲张患者出血风险的评估价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 492-498.
[13] 孙承毅, 彭林, 钟凤珍, 褚成静. 不同剂量艾司氯胺酮复合舒芬太尼在腹腔镜胃癌根治术中的麻醉效果观察[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 524-528.
[14] 杜凌云, 戚猛, 缪佳铭. HFpEF患者胸阻抗法血流动力学监测及其临床意义[J/OL]. 中华卫生应急电子杂志, 2025, 11(05): 257-262.
[15] 杨超, 张少斌. CT增强扫描评价危重症患者容量反应性的临床意义[J/OL]. 中华卫生应急电子杂志, 2025, 11(05): 263-268.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?