| [1] |
Gu Y, Wang P, Li H, et al. Chinese expert consensus on adult ventral abdominal wall defect repair and reconstruction[J]. Am J Surg, 2021, 222(1): 86-98.
|
| [2] |
Liang K, Ding C, Li J, et al. A Review of Advanced Abdominal Wall Hernia Patch Materials[J]. Adv Healthc Mater, 2024, 13(10): e2303506.
|
| [3] |
刘德琦, 刘姗, 袁浩然, 等. 疝补片材料研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(5): 582-588.
|
| [4] |
Li Z, Dong W, Ren J, et al. Mechanically Trained Calcium Alginate Ionic Hydrogels for Enhanced Abdominal Wall Defect Repair[J]. Adv Funct Mater, 2025, 35(22): 2419151.
|
| [5] |
汤福鑫, 黄浩男, 马宁, 等. 疝补片的发展:从人工补片到智能材料[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(4): 365-368.
|
| [6] |
陈双, 周太成. 腹壁的力学原理[J]. 中国实用外科杂志, 2021, 41(4): 371-373, 378.
|
| [7] |
陈双, 江志鹏. 切口疝、腹壁力学与外科技术[J]. 中国普通外科杂志, 2023, 32(10): 1453-1459.
|
| [8] |
See CW, Kim T, Zhu D. Hernia Mesh and Hernia Repair: A Review[J]. Eng Regen, 2020, 1(1): 19-33.
|
| [9] |
陈双, 江志鹏. 再论腹壁的力学原理--各向异性的临床与思考[J]. 中国实用外科杂志, 2022, 42(2): 159-162.
|
| [10] |
Deeken CR, Lake SP. Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair[J]. J Mech Behav Biomed Mater, 2017, 74: 411-427.
|
| [11] |
耿钊宁, 殷东明, 毛琳, 等. 疝补片的微观结构和力学性能研究[J]. 国际生物医学工程杂志, 2023, 46(4): 300-305.
|
| [12] |
Todros S, Pachera P, Baldan N, et al. Computational modeling of abdominal hernia laparoscopic repair with a surgical mesh[J]. Int J Comput Assist Radiol Surg, 2018, 13(1): 73-81.
|
| [13] |
Xu X, Zhang G, Zhao J, et al. From mechanotransduction to applications: Three-dimensional mechanical stimuli in cell fate regulation[J]. Chem Eng J, 2025, 524: 168839.
|
| [14] |
Atcha H, Choi YS, Chaudhuri O, et al. Getting physical: Material mechanics is an intrinsic cell cue[J]. Cell Stem Cell, 2023, 30(6): 750-765.
|
| [15] |
Wang S, Yan H, Fang B, et al. A myogenic niche with a proper mechanical stress environment improves abdominal wall muscle repair by modulating immunity and preventing fibrosis[J]. Biomaterials, 2022, 285: 121519
|
| [16] |
Wang N, Lu Y, Rothrauff BB, et al. Mechanotransduction pathways in articular chondrocytes and the emerging role of estrogen receptor-α[J]. Bone Res, 2023, 11(1): 13.
|
| [17] |
Yuan X, Shi J, Kang Y, et al. Piezoelectricity, Pyroelectricity, and Ferroelectricity in Biomaterials and Biomedical Applications[J]. Adv Mater, 2024, 36(3): e2308726.
|
| [18] |
Zhang Y, Le Friec A, Zhang Z, et al. Electroactive biomaterials synergizing with electrostimulation for cardiac tissue regeneration and function-monitoring[J]. Mater Today, 2023, 70: 237-272.
|
| [19] |
Ferrigno B, Bordett R, Duraisamy N, et al. Bioactive polymeric materials and electrical stimulation strategies for musculoskeletal tissue repair and regeneration[J]. Bioact Mater, 2020, 5(3): 468-485.
|
| [20] |
Xin F, Lu Y. A nonlinear acoustomechanical field theory of polymeric gels undergoing large deformation coupled with diffusion mass transport of solvent[J]. Int J Solids Struct, 2017, 112: 133-142.
|
| [21] |
Shakeri-Zadeh A, Bulte JWM. Imaging-guided precision hyperthermia with magnetic nanoparticles[J]. Nat Rev Bioeng, 2025, 3(3): 245-260.
|
| [22] |
Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 2006, 126(4): 677-689.
|
| [23] |
Ji C, Huang Y. Durotaxis and negative durotaxis: where should cells go?[J]. Commun Biol, 2023, 6(1): 1169.
|
| [24] |
Chaudhuri O, Cooper-White J, Janmey PA, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour[J]. Nature, 2020, 584(7822): 535-546.
|
| [25] |
Shi N, Wang J, Tang S, et al. Matrix Nonlinear Viscoelasticity Regulates Skeletal Myogenesis through MRTF Nuclear Localization and Nuclear Mechanotransduction[J]. Small, 2024, 20(9): e2305218.
|
| [26] |
Fang Q, Wang D, Lin W, et al. Highly Stretchable Piezoelectric Elastomer for Accelerated Repairing of Skeletal Muscles Loss[J]. Adv Funct Mater, 2024, 34(30): 2313055.
|
| [27] |
Roloson EB, Jung WH, McNamara SL, et al. Collagen Scaffold Viscoelasticity Regulates Muscle Cell Phenotype[J]. Adv Healthc Mater, 2025, e02775.
|
| [28] |
Zhu Y, Yu X, Liu H, et al. Strategies of functionalized GelMA-based bioinks for bone regeneration: Recent advances and future perspectives[J]. Bioact Mater, 2024, 38: 346-373.
|
| [29] |
Ma Y, Gong J, Li Q, et al. Triple-Mechanism Enhanced Flexible SiO2 Nanofiber Composite Hydrogel with High Stiffness and Toughness for Cartilaginous Ligaments[J]. Small, 2024, 20(25): e2310046.
|
| [30] |
Liu J, Zhao W, Ma Z, et al. Cartilage-bioinspired tenacious concrete-like hydrogel verified via in-situ testing[J]. Nat Commun, 2025, 16(1): 2309.
|
| [31] |
Li L, Wang S, You C, et al. Hydrogels mimicking the viscoelasticity of extracellular matrix for regenerative medicine: Design, application, and molecular mechanism[J]. Chem Eng J, 2024, 498: 155206.
|
| [32] |
Yang B, Wei K, Loebel C, et al. Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics[J]. Nat Commun, 2021, 12(1): 3514.
|
| [33] |
Chang TL, Borelli AN, Cutler AA, et al. Myofibers cultured in viscoelastic hydrogels reveal the effects of integrin-binding and mechanosensing on muscle satellite cells[J]. Acta Biomater, 2025, 192: 48-60.
|
| [34] |
Jain K, Kishan K, Minhaj RF, et al. Immobile Integrin Signaling Transit and Relay Nodes Organize Mechanosignaling through Force-Dependent Phosphorylation in Focal Adhesions[J]. ACS Nano, 2025, 19(2): 2070-2088.
|
| [35] |
Zhang X, Wang T, Zhang Z, et al. Electrical stimulation system based on electroactive biomaterials for bone tissue engineering[J]. Mater Today, 2023, 68: 177-203.
|
| [36] |
Bian X, Liu X, Zhou M, et al. Mechanical stimulation promotes fibrochondrocyte proliferation by activating the TRPV4 signaling pathway during tendon-bone insertion healing: CCN2 plays an important regulatory role[J]. Burns Trauma, 2024, 12: tkae028.
|
| [37] |
Huang M, Li W, Sun Y, et al. Janus piezoelectric adhesives regulate macrophage TRPV1/Ca2+/cAMP axis to stimulate tendon-to-bone healing by multi-omics analysis[J]. Bioact Mater, 2025, 50: 134-151.
|
| [38] |
Driskill JH, Pan D. Control of stem cell renewal and fate by YAP and TAZ[J]. Nat Rev Mol Cell Biol, 2023, 24(12): 895-911.
|
| [39] |
Silver JS, Günay KA, Cutler AA, et al. Injury-mediated stiffening persistently activates muscle stem cells through YAP and TAZ mechanotransduction[J]. Sci Adv, 2021, 7(11): eabe4501.
|
| [40] |
Kersey AL, Cheng DY, Deo KA, et al. Stiffness assisted cell-matrix remodeling trigger 3D mechanotransduction regulatory programs[J]. Biomaterials, 2024, 306: 122473.
|