[1] |
Garvey PB, Giordano SA, Baumann DP, et al. Long-term outcomes after abdominal wall reconstruction with acellular dermal matrix[J]. J Am Coll Surg, 2017, 224(3):341-350.
|
[2] |
Koscielny A, Widenmayer S, May T, et al. Comparison of biological and alloplastic meshes in ventral incisional hernia repair[J].Langenbecks Arch Surg, 2018, 403(2):255-263.
|
[3] |
Harris HW, Primus F, Young C, et al. Preventing recurrence in clean and contaminated hernias using biologic versus synthetic mesh in ventral hernia repair:the PRICE randomized clinical trial[J]. Ann Surg, 2021, 273(4):648-655.
|
[4] |
Olavarria OA, Bernardi K, Dhanani NH, et al. Synthetic versus biologic mesh for complex open ventral hernia repair:a pilot randomized controlled trial[J]. Surg Infect(Larchmt), 2021, 22(5):496-503.
|
[5] |
Butler CE, Prieto VG. Reduction of adhesions with composite AlloDerm/polypropylene mesh implants for abdominal wall reconstruction[J]. Plast Reconstr Surg, 2004, 114(2):464-473.
|
[6] |
FitzGerald JF, Kumar AS. Biologic versus synthetic mesh reinforcement:what are the pros and cons?[J]. Clin Colon Rectal Surg, 2014, 27(4):140-148.
|
[7] |
Annor AH, Tang ME, Pui CL, et al. Effect of enzymatic degradation on the mechanical properties of biological scaffold materials[J]. Surg Endosc, 2012, 26(10):2767-2778.
|
[8] |
马颂章. 生物补片的进展和临床应用[J]. 国际外科学杂志, 2008,35(12):793-795.
|
[9] |
Chaplin JM, Costantino PD, Wolpoe ME, et al. Use of an acellular dermal allograft for dural replacement:an experimental study[J].Neurosurgery, 1999, 45(2):320-327.
|
[10] |
夏克尔·赛塔尔, 李彦, 乔燕莎, 等. 疝气补片及其高生物相容性发展现状和趋势展望[J]. 纺织导报, 2018(5):42-46.
|
[11] |
van't Riet M, de Vos van Steenwijk PJ, Bonjer HJ, et al. Mesh repair for postoperative wound dehiscence in the presence of infection:is absorbable mesh safer than non-absorbable mesh?[J]. Hernia, 2007,11(5):409-413.
|
[12] |
Claessen JJM, Timmer AS, Atema JJ, et al. Outcomes of mid-term and long-term degradable biosynthetic meshes in single-stage open complex abdominal wall reconstruction[J]. Hernia, 2021, 25(6):1647-1657.
|
[13] |
Aldohayan A, Alamri H, Aljunidel R, et al. Laparoscopic ventral hernia repair with poly-4-hydroxybutyrate absorbable barrier composite mesh[J]. JSLS, 2021, 25(1):e2020. 00105.
|
[14] |
Pascual G, Sotomayor S, Rodríguez M, et al. Repair of abdominal wall defects with biodegradable laminar prostheses:polymeric or biological[J]? PLoS One, 2012, 7(12):e52628.
|
[15] |
Pascual G, Pérez-Köhler B, Rodríguez M, et al. Postimplantation host tissue response and biodegradation of biologic versus polymer meshes implanted in an intraperitoneal position[J]. Surg Endosc,2014, 28(2):559-569.
|
[16] |
López-Cano M, Armengol M, Quiles MT, et al. Preventive midline laparotomy closure with a new bioabsorbable mesh:an experimental study[J]. J Surg Res, 2013, 181(1):160-169.
|
[17] |
Peeters E, van Barneveld KW, Schreinemacher MH, et al. One-year outcome of biological and synthetic bioabsorbable meshes for augmentation of large abdominal wall defects in a rabbit model[J]. J Surg Res, 2013, 180(2):274-283.
|
[18] |
Yeo KK, Park TH, Park JH, et al. Histologic changes of implanted gore bio-a in an experimental animal model[J]. Biomed Res Int,2014, 2014:167962.
|
[19] |
Gruber-Blum S, Brand J, Keibl C, et al. Abdominal wall reinforcement:biologic vs. degradable synthetic devices[J]. Hernia,2017, 21(2):305-315.
|
[20] |
Cavallo JA, Greco SC, Liu J, et al. Remodeling characteristics and biomechanical properties of a crosslinked versus a non-crosslinked porcine dermis scaffolds in a porcine model of ventral hernia repair[J]. Hernia, 2015, 19(2):207-218.
|
[21] |
De Silva GS, Krpata DM, Gao Y, et al. Lack of identifiable biologic behavior in a series of porcine mesh explants[J]. Surgery, 2014,156(1):183-189.
|
[22] |
Fernandez-Moure JS, Van Eps JL, Menn ZK, et al. Platelet rich plasma enhances tissue incorporation of biologic mesh[J]. J Surg Res, 2015, 199(2):412-419.
|
[23] |
Petter-Puchner AH, Fortelny RH, Silic K, et al. Biologic hernia implants in experimental intraperitoneal onlay mesh plasty repair:the impact of proprietary collagen processing methods and fibrin sealant application on tissue integration[J]. Surg Endosc, 2011, 25(10):3245-3252.
|
[24] |
Martin DP, Badhwar A, Shah DV, et al. Characterization of poly-4-hydroxybutyrate mesh for hernia repair applications[J]. J Surg Res, 2013, 184(2):766-773.
|
[25] |
Deeken CR, Gagne DH, Badhwar A. Mechanical and histological characteristics of PhasixTM ST mesh in a porcine model of hernia repair[J]. J Invest Surg, 2022, 35(2):415-423.
|
[26] |
Deeken CR, Matthews BD. Characterization of the mechanical strength, resorption properties, and histologic characteristics of a fully absorbable material(poly-4-hydroxybutyrate-PHASIX mesh) in a porcine model of hernia repair[J]. ISRN Surg, 2013, 2013:238067.
|
[27] |
Monteiro GA, Delossantos AI, Rodriguez NL, et al. Porcine incisional hernia model:evaluation of biologically derived intact extracellular matrix repairs[J]. J Tissue Eng, 2013, 4:2041731413508771.
|
[28] |
Hjort H, Mathisen T, Alves A, et al. Three-year results from a preclinical implantation study of a long-term resorbable surgical mesh with time-dependent mechanical characteristics[J]. Hernia,2012, 16(2):191-197.
|
[29] |
Liu Z, Li S, Su L, et al. Novel superhydrophilic poly(l-lactic acid-co-ε-caprolactone)/fibrinogen electrospun patch for rat abdominal wall reconstruction[J]. J Biomater Appl, 2015, 30(2):230-238.
|
[30] |
Timmer AS, Claessen JJM, Brouwer de Koning IM, et al. Clinical outcomes of open abdominal wall reconstruction with the use of a polypropylene reinforced tissue matrix:a multicenter retrospective study[J]. Hernia, 2022, 26(5):1241-1250.
|
[31] |
Lake SP, Stoikes NFN, Badhwar A, et al. Contamination of hybrid hernia meshes compared to bioresorbable PhasixTM mesh in a rabbit subcutaneous implant inoculation model[J]. Ann Med Surg(Lond),2019, 46:12-16.
|
[32] |
Nguyen PT, Asarias JR, Pierce LM. Influence of a new monofilament polyester mesh on inflammation and matrix remodeling[J]. J Invest Surg, 2012, 25(5):330-339.
|
[33] |
Bryan N, Ahswin H, Smart NJ, et al. In vitro activation of human leukocytes in response to contact with synthetic hernia meshes[J].Clin Biochem, 2012, 45(9):672-676.
|
[34] |
Aydinuraz K, Ağalar C, Ağalar F, et al. In vitro S. epidermidis and S.aureus adherence to composite and lightweight polypropylene grafts[J]. J Surg Res, 2009, 157(1):e79-e86.
|
[35] |
Klinge U, Junge K, Spellerberg B, et al. Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface,the bacteria adherence, and the in vivo consequences in a rat model[J]. J Biomed Mater Res, 2002, 63(6):765-771.
|
[36] |
Stoikes NFN, Scott JR, Badhwar A, et al. Characterization of host response, resorption, and strength properties, and performance in the presence of bacteria for fully absorbable biomaterials for soft tissue repair[J]. Hernia, 2017, 21(5):771-782.
|
[37] |
Miserez M, Jairam AP, Boersema GSA, et al. Resorbable synthetic meshes for abdominal wall defects in preclinical setting:a literature review[J]. J Surg Res, 2019, 237:67-75.
|
[38] |
毕时椿. 静电纺技术开创组织修复生物材料新纪元[J]. 张江科技评论, 2020,(2):40-42.
|
[39] |
Li S, Xiao H, Yang L, et al. Electrospun P(LLA-CL) nanoscale fibrinogen patch vs porcine small intestine submucosa graft repair of inguinal hernia in adults:a randomized, single-blind, controlled,multicenter, noninferiority trial[J]. J Am Coll Surg, 2019, 229(6):541-551. e541.
|
[40] |
Mondalek FG, Ashley RA, Roth CC, et al. Enhanced angiogenesis of modified porcine small intestinal submucosa with hyaluronic acid-poly(lactide-co-glycolide) nanoparticles:from fabrication to preclinical validation[J]. J Biomed Mater Res A, 2010, 94(3):712-719.
|
[41] |
Suckow MA, Hodde JP, Wolter WR, et al. Addition of nimesulide to small intestinal submucosa biomaterial inhibits postsurgical adhesiogenesis in rat[J]. J Biomed Mater Res B Appl Biomater, 2010,93(1):18-23.
|