切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (03) : 339 -343. doi: 10.3877/cma.j.issn.1674-392X.2025.03.018

综述

四种完全可吸收合成补片的降解和再生
黄雨琳1, 郑立锋1,(), 嵇振岭2,3   
  1. 1. 210023 南京大学医学院附属泰康仙林鼓楼医院普外科
    2. 210009 南京,东南大学附属中大医院普外科
    3. 210044 南京江北医院普外科
  • 收稿日期:2022-03-30 出版日期:2025-06-18
  • 通信作者: 郑立锋

Degradation and regeneration of four fully absorbable synthetic patches

Yulin Huang1, Lifeng Zheng1,(), Zhenling Ji2,3   

  1. 1. Department of General Surgery,Taikang Xianlin Drum Tower Hospital,Affiliated Hospital of Medical School,Nanjing University,Nanjing 210023,China
    2. Department of General Surgery,Zhongda Hospital,School of Medicine,Southeast University,Nanjing 210009,China
    3. Department of General Surgery,Nanjing Jiangbei Hospital,Nanjing 210044,China
  • Received:2022-03-30 Published:2025-06-18
  • Corresponding author: Lifeng Zheng
引用本文:

黄雨琳, 郑立锋, 嵇振岭. 四种完全可吸收合成补片的降解和再生[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 339-343.

Yulin Huang, Lifeng Zheng, Zhenling Ji. Degradation and regeneration of four fully absorbable synthetic patches[J/OL]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2025, 19(03): 339-343.

补片是重要的腹壁组织缺损修复物,能够替代薄弱受损的腹壁筋膜组织,是生物相容材料向个体化组织工程材料发展的一个过渡,它的发展为外科医师提供了许多新的观念和思路。其中生物补片的出现,无疑给疝修补技术的发展带来了福音。然而随着大量临床研究的深入,人们对生物补片在腹股沟疝修补术后的远期疗效方面存在质疑。近年来,随着材料学的飞速发展,合成可吸收补片因其更少的副作用而逐渐引起外科医师的注意,但人们对可吸收合成补片在体内的降解和再生的了解仍然不足。为了更好的运用可吸收补片,本文归纳四种可吸收合成补片的降解和再生。

Hernia mesh is an important repair material for abdominal wall tissue defect, which can replace the weak and damaged abdominal wall fascia tissue. It is a transition from biocompatible material to individual tissue engineering material, and its development has provided surgeons with many new thoughts and ideas. The appearance of biological mesh undoubtedly brings good news to the development of hernia repair technology. However, with the deepening of a large number of clinical studies, there are doubts about the long-term efficacy of biological mesh in inguinal hernia repair. In recent years, with the rapid development of materials science, synthetic absorbable mesh has gradually attracted the attention of surgeons because of its fewer side effects. However, the degradation and regeneration of synthetic absorbable mesh in vivo is still not well understood. In order to make better use of absorbable patches, the degradation and regeneration of four kinds of absorbable synthetic patches are summarized in this paper.

表1 四种完全可吸收补片的比较
[1]
Garvey PB, Giordano SA, Baumann DP, et al. Long-term outcomes after abdominal wall reconstruction with acellular dermal matrix[J]. J Am Coll Surg, 2017, 224(3):341-350.
[2]
Koscielny A, Widenmayer S, May T, et al. Comparison of biological and alloplastic meshes in ventral incisional hernia repair[J].Langenbecks Arch Surg, 2018, 403(2):255-263.
[3]
Harris HW, Primus F, Young C, et al. Preventing recurrence in clean and contaminated hernias using biologic versus synthetic mesh in ventral hernia repair:the PRICE randomized clinical trial[J]. Ann Surg, 2021, 273(4):648-655.
[4]
Olavarria OA, Bernardi K, Dhanani NH, et al. Synthetic versus biologic mesh for complex open ventral hernia repair:a pilot randomized controlled trial[J]. Surg Infect(Larchmt), 2021, 22(5):496-503.
[5]
Butler CE, Prieto VG. Reduction of adhesions with composite AlloDerm/polypropylene mesh implants for abdominal wall reconstruction[J]. Plast Reconstr Surg, 2004, 114(2):464-473.
[6]
FitzGerald JF, Kumar AS. Biologic versus synthetic mesh reinforcement:what are the pros and cons?[J]. Clin Colon Rectal Surg, 2014, 27(4):140-148.
[7]
Annor AH, Tang ME, Pui CL, et al. Effect of enzymatic degradation on the mechanical properties of biological scaffold materials[J]. Surg Endosc, 2012, 26(10):2767-2778.
[8]
马颂章. 生物补片的进展和临床应用[J]. 国际外科学杂志, 2008,35(12):793-795.
[9]
Chaplin JM, Costantino PD, Wolpoe ME, et al. Use of an acellular dermal allograft for dural replacement:an experimental study[J].Neurosurgery, 1999, 45(2):320-327.
[10]
夏克尔·赛塔尔, 李彦, 乔燕莎, 等. 疝气补片及其高生物相容性发展现状和趋势展望[J]. 纺织导报, 2018(5):42-46.
[11]
van't Riet M, de Vos van Steenwijk PJ, Bonjer HJ, et al. Mesh repair for postoperative wound dehiscence in the presence of infection:is absorbable mesh safer than non-absorbable mesh?[J]. Hernia, 2007,11(5):409-413.
[12]
Claessen JJM, Timmer AS, Atema JJ, et al. Outcomes of mid-term and long-term degradable biosynthetic meshes in single-stage open complex abdominal wall reconstruction[J]. Hernia, 2021, 25(6):1647-1657.
[13]
Aldohayan A, Alamri H, Aljunidel R, et al. Laparoscopic ventral hernia repair with poly-4-hydroxybutyrate absorbable barrier composite mesh[J]. JSLS, 2021, 25(1):e2020. 00105.
[14]
Pascual G, Sotomayor S, Rodríguez M, et al. Repair of abdominal wall defects with biodegradable laminar prostheses:polymeric or biological[J]? PLoS One, 2012, 7(12):e52628.
[15]
Pascual G, Pérez-Köhler B, Rodríguez M, et al. Postimplantation host tissue response and biodegradation of biologic versus polymer meshes implanted in an intraperitoneal position[J]. Surg Endosc,2014, 28(2):559-569.
[16]
López-Cano M, Armengol M, Quiles MT, et al. Preventive midline laparotomy closure with a new bioabsorbable mesh:an experimental study[J]. J Surg Res, 2013, 181(1):160-169.
[17]
Peeters E, van Barneveld KW, Schreinemacher MH, et al. One-year outcome of biological and synthetic bioabsorbable meshes for augmentation of large abdominal wall defects in a rabbit model[J]. J Surg Res, 2013, 180(2):274-283.
[18]
Yeo KK, Park TH, Park JH, et al. Histologic changes of implanted gore bio-a in an experimental animal model[J]. Biomed Res Int,2014, 2014:167962.
[19]
Gruber-Blum S, Brand J, Keibl C, et al. Abdominal wall reinforcement:biologic vs. degradable synthetic devices[J]. Hernia,2017, 21(2):305-315.
[20]
Cavallo JA, Greco SC, Liu J, et al. Remodeling characteristics and biomechanical properties of a crosslinked versus a non-crosslinked porcine dermis scaffolds in a porcine model of ventral hernia repair[J]. Hernia, 2015, 19(2):207-218.
[21]
De Silva GS, Krpata DM, Gao Y, et al. Lack of identifiable biologic behavior in a series of porcine mesh explants[J]. Surgery, 2014,156(1):183-189.
[22]
Fernandez-Moure JS, Van Eps JL, Menn ZK, et al. Platelet rich plasma enhances tissue incorporation of biologic mesh[J]. J Surg Res, 2015, 199(2):412-419.
[23]
Petter-Puchner AH, Fortelny RH, Silic K, et al. Biologic hernia implants in experimental intraperitoneal onlay mesh plasty repair:the impact of proprietary collagen processing methods and fibrin sealant application on tissue integration[J]. Surg Endosc, 2011, 25(10):3245-3252.
[24]
Martin DP, Badhwar A, Shah DV, et al. Characterization of poly-4-hydroxybutyrate mesh for hernia repair applications[J]. J Surg Res, 2013, 184(2):766-773.
[25]
Deeken CR, Gagne DH, Badhwar A. Mechanical and histological characteristics of PhasixTM ST mesh in a porcine model of hernia repair[J]. J Invest Surg, 2022, 35(2):415-423.
[26]
Deeken CR, Matthews BD. Characterization of the mechanical strength, resorption properties, and histologic characteristics of a fully absorbable material(poly-4-hydroxybutyrate-PHASIX mesh) in a porcine model of hernia repair[J]. ISRN Surg, 2013, 2013:238067.
[27]
Monteiro GA, Delossantos AI, Rodriguez NL, et al. Porcine incisional hernia model:evaluation of biologically derived intact extracellular matrix repairs[J]. J Tissue Eng, 2013, 4:2041731413508771.
[28]
Hjort H, Mathisen T, Alves A, et al. Three-year results from a preclinical implantation study of a long-term resorbable surgical mesh with time-dependent mechanical characteristics[J]. Hernia,2012, 16(2):191-197.
[29]
Liu Z, Li S, Su L, et al. Novel superhydrophilic poly(l-lactic acid-co-ε-caprolactone)/fibrinogen electrospun patch for rat abdominal wall reconstruction[J]. J Biomater Appl, 2015, 30(2):230-238.
[30]
Timmer AS, Claessen JJM, Brouwer de Koning IM, et al. Clinical outcomes of open abdominal wall reconstruction with the use of a polypropylene reinforced tissue matrix:a multicenter retrospective study[J]. Hernia, 2022, 26(5):1241-1250.
[31]
Lake SP, Stoikes NFN, Badhwar A, et al. Contamination of hybrid hernia meshes compared to bioresorbable PhasixTM mesh in a rabbit subcutaneous implant inoculation model[J]. Ann Med Surg(Lond),2019, 46:12-16.
[32]
Nguyen PT, Asarias JR, Pierce LM. Influence of a new monofilament polyester mesh on inflammation and matrix remodeling[J]. J Invest Surg, 2012, 25(5):330-339.
[33]
Bryan N, Ahswin H, Smart NJ, et al. In vitro activation of human leukocytes in response to contact with synthetic hernia meshes[J].Clin Biochem, 2012, 45(9):672-676.
[34]
Aydinuraz K, Ağalar C, Ağalar F, et al. In vitro S. epidermidis and S.aureus adherence to composite and lightweight polypropylene grafts[J]. J Surg Res, 2009, 157(1):e79-e86.
[35]
Klinge U, Junge K, Spellerberg B, et al. Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface,the bacteria adherence, and the in vivo consequences in a rat model[J]. J Biomed Mater Res, 2002, 63(6):765-771.
[36]
Stoikes NFN, Scott JR, Badhwar A, et al. Characterization of host response, resorption, and strength properties, and performance in the presence of bacteria for fully absorbable biomaterials for soft tissue repair[J]. Hernia, 2017, 21(5):771-782.
[37]
Miserez M, Jairam AP, Boersema GSA, et al. Resorbable synthetic meshes for abdominal wall defects in preclinical setting:a literature review[J]. J Surg Res, 2019, 237:67-75.
[38]
毕时椿. 静电纺技术开创组织修复生物材料新纪元[J]. 张江科技评论, 2020,(2):40-42.
[39]
Li S, Xiao H, Yang L, et al. Electrospun P(LLA-CL) nanoscale fibrinogen patch vs porcine small intestine submucosa graft repair of inguinal hernia in adults:a randomized, single-blind, controlled,multicenter, noninferiority trial[J]. J Am Coll Surg, 2019, 229(6):541-551. e541.
[40]
Mondalek FG, Ashley RA, Roth CC, et al. Enhanced angiogenesis of modified porcine small intestinal submucosa with hyaluronic acid-poly(lactide-co-glycolide) nanoparticles:from fabrication to preclinical validation[J]. J Biomed Mater Res A, 2010, 94(3):712-719.
[41]
Suckow MA, Hodde JP, Wolter WR, et al. Addition of nimesulide to small intestinal submucosa biomaterial inhibits postsurgical adhesiogenesis in rat[J]. J Biomed Mater Res B Appl Biomater, 2010,93(1):18-23.
[1] 李涛, 朱含放, 李世拥. 我国腹腔镜疝修补术式选择与原则[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 362-365.
[2] 李若云, 罗文彬, 潘超凡, 罗瑞英, 罗长江. 大鼠动物模型在腹壁疝中的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 344-347.
[3] 储修峰, 王苗锋, 周劲松, 李铧杰. 完全内镜下sublay 修补与腹腔镜下腹腔内补片修补对中小型腹壁疝的疗效比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(02): 195-201.
[4] 罗文, 王勇, 段鑫, 石念, 柯文杰, 武英翔, 杜晨阳. 组织结构分离技术联合完全腹膜外桥接修补手术治疗成人巨大腹壁切口疝的临床研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(02): 178-182.
[5] 黄雨琳, 嵇振岭. 不同疝补片对伤口愈合胶原蛋白沉积的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(01): 25-30.
[6] 孔博, 张璟, 吕珂. 腹外疝的超声诊断质量分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(01): 31-34.
[7] 嵇振岭, 陈杰, 唐健雄. 重视复杂腹壁疝手术并发症的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 601-606.
[8] 江志鹏, 钟克力, 陈双. 复杂腹壁疝手术后腹腔高压与腹腔间室综合征的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 612-615.
[9] 王学虎, 赵渝. 复杂腹壁疝手术中血管损伤并发症的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 616-619.
[10] 张剑豪, 蔡丹文, 蒋辰浩, 张宇君, 韩路, 赵雪刚, 吕行, 萧家麒, 张杰滨, 隋昕, 张英才. 过表达POSTN 的间充质干细胞来源外泌体增强肝脏再生能力[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 65-74.
[11] 廖丽斐, 廖鹏程, 石飒飒, 马瑞朝, 屈新军. 负载牙周膜干细胞的HA-TCP 支架复合体对牙周组织再生的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 93-99.
[12] 梁瑶瑶, 邬绿莹, 陈津. 负载干细胞外泌体水凝胶治疗糖尿病足溃疡的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 112-119.
[13] 于倩, 崔庆超, 范一卉, 姚瑶. 施旺细胞衍生的细胞外囊泡通过Wnt/β-catenin信号通路促进牙髓再生的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 1-11.
[14] 蒙柄成, 朱海, 任洪冰, 毛伟民, 韦德令, 徐邦浩, 王继龙, 金宗睿, 蓝祝晶, 黄柯豫, 卢婷婷, 张灵, 郭雅, 文张. IGF-1 介导FOXO 信号通路在大鼠ALPPS 术后肝再生中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 118-125.
[15] 吴雪云, 胡小军, 范应方. 肝切除术中剩余肝再生能力的评估与预测[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 894-897.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?