切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (03) : 344 -347. doi: 10.3877/cma.j.issn.1674-392X.2025.03.019

综述

大鼠动物模型在腹壁疝中的研究进展
李若云1, 罗文彬1, 潘超凡1, 罗瑞英1, 罗长江1,()   
  1. 1. 730030 兰州大学第二医院普外科
  • 收稿日期:2024-06-30 出版日期:2025-06-18
  • 通信作者: 罗长江

Research progress on rat animal models in abdominal wall hernias

Ruoyun Li1, Wenbin Luo1, Chaofan Pan1, Ruiying Luo1, Changjiang Luo1,()   

  1. 1. General Surgery Department of Lanzhou University Second Hospital, Lanzhou 730030, China
  • Received:2024-06-30 Published:2025-06-18
  • Corresponding author: Changjiang Luo
引用本文:

李若云, 罗文彬, 潘超凡, 罗瑞英, 罗长江. 大鼠动物模型在腹壁疝中的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 344-347.

Ruoyun Li, Wenbin Luo, Chaofan Pan, Ruiying Luo, Changjiang Luo. Research progress on rat animal models in abdominal wall hernias[J/OL]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2025, 19(03): 344-347.

腹壁疝是一种常见疾病,需要手术治疗,有效的手术修复依赖于新材料和新技术的开发和测试,这些通常是以动物模型为基础。其中,大鼠动物模型因其与人类的生理和遗传相似性、易于管理的体型而被广泛运用。本文综述了大鼠动物模型在腹壁疝和补片研究中的最新进展,以期为腹壁疝后续研究提供参考。

Abdominal wall hernias are a common condition that requires surgical intervention.Effective surgical repair relies on the development and testing of new materials and technologies, often based on animal models. Among these, rat animal models are widely used due to their physiological and genetic similarities to humans and their manageable size. This paper reviews the latest advancements in rat animal models concerning abdominal wall hernias and mesh innovations, aiming to provide references for future research on abdominal wall hernias.

[1]
Gignoux B, Bayon Y, Martin D, et al. Incidence and risk factors for incisional hernia and recurrence:Retrospective analysis of the French national database[J]. Colorectal Dis, 2021, 23(6):1515-1523.
[2]
Chen-Xu J, Bessa-Melo R, Graça L, et al. Incisional hernia in hepatobiliary and pancreatic surgery:incidence and risk factors[J].Hernia, 2019, 23(1):67-79.
[3]
邹振玉, 杨硕, 王明刚, 等. 新型巨大腹壁疝及腹腔高压动物模型的实验研究[J]. 首都医科大学学报, 2018, 39(6):900-904.
[4]
Farag A, Mandour AS, Hendawy H, et al. A review on experimental surgical models and anesthetic protocols of heart failure in rats[J].Front Vet Sci, 2023, 10:1103229.
[5]
秦昌富, 陈杰, 申英末. 动物模型在疝治疗和研究中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2017, 11(3):161-164.
[6]
Vercelli C, Re G, Iussich S, et al. In Vivo Evaluation of a Pectin-Honey Hydrogel Coating on Polypropylene Mesh in a Rat Model of Acute Hernia[J]. Gels, 2021, 7(3):132.
[7]
Kaufmann R, Timmermans L, van Loon YT, et al. Repair of complex abdominal wall hernias with a cross-linked porcine acellular matrix:cross-sectional results of a Dutch cohort study[J]. Int J Surg, 2019,65:120-127.
[8]
Huang W, Ling S, Li C, et al. Silkworm silk-based materials and devices generated using bio-nanotechnology[J]. Chem Soc Rev,2018, 47(17):6486-6504.
[9]
Liu Z, Liu X, Bao L, et al. The evaluation of functional small intestinal submucosa for abdominal wall defect repair in a rat model:Potent effect of sequential release of VEGF and TGF-β1 on host integration[J]. Biomaterials, 2021, 276:120999.
[10]
Xu W, Shen R, Yan Y, et al. Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning[J]. J Mech Behav Biomed Mater, 2017,65:428-438.
[11]
Wang X, Liu C, Li X, et al. A novel electrospun polylactic acid silkworm fibroin mesh for abdominal wall hernia repair[J]. Materials Today Bio, 2024, 24:100915.
[12]
Liu J, Hou J, Liu S, et al. Graphene Oxide Functionalized Double-Layered Patch with Anti-Adhesion Ability for Abdominal Wall Defects[J]. Int J Nanomedicine, 2021, 16:3803-3818.
[13]
Thankam FG, Palanikumar G, Fitzgibbons RJ, et al. Molecular Mechanisms and Potential Therapeutic Targets in Incisional Hernia[J]. J Surg Res, 2019, 236:134-143.
[14]
Saeidi N, Guo X, Hutcheon AEK, et al. Disorganized collagen scaffold interferes with fibroblast mediated deposition of organized extracellular matrix in vitro[J]. Biotechnol Bioeng, 2012, 109(10):2683-2698.
[15]
Hendrawan S, Lheman J, Weber U, et al. Fibroblast matrix implants-a better alternative for incisional hernia repair?[J]. Biomed Mater, 2024, 19(3).
[16]
Qamar N, Abbas N, Irfan M, et al. Personalized 3D printed ciprofloxacin impregnated meshes for the management of hernia[J]. J Drug Deliv Sci Tec, 2019, 53:101164.
[17]
Hu Q, Zhang R, Zhang H, et al. Topological Structure Design and Fabrication of Biocompatible PLA/TPU/ADM Mesh with Appropriate Elasticity for Hernia Repair[J]. Macromol Biosci, 2021,21(6):e2000423.
[18]
Costa A, Adamo S, Gossetti F, et al. Biological Scaffolds for Abdominal Wall Repair:Future in Clinical Application?[J].Materials(Basel), 2019, 12(15):2375.
[19]
Zhang X, Chen X, Hong H, et al. Decellularized extracellular matrix scaffolds:Recent trends and emerging strategies in tissue engineering[J]. Bioact Mater, 2022, 10:15-31.
[20]
Mallis P, Oikonomidis C, Dimou Z, et al. Optimizing Decellularization Strategies for the Efficient Production of Whole Rat Kidney Scaffolds[J]. Tissue Eng Regen Med, 2021, 18(4):623-640.
[21]
Skepastianos G, Mallis P, Kostopoulos E, et al. Efficient Decellularization of the Full-Thickness Rat-Derived Abdominal Wall to Produce Acellular Biologic Scaffolds for Tissue Reconstruction:Promising Evidence Acquired from In Vitro Results[J].Bioengineering(Basel), 2023, 10(8):913.
[22]
Anton-Sales I, Roig-Sanchez S, Traeger K, et al. In vivo soft tissue reinforcement with bacterial nanocellulose[J]. Biomater Sci, 2021,9(8):3040-3050.
[23]
Franklyn J, Ramesh S, Madhuri V, et al. Abdominal Wall Reconstruction with Tissue-Engineered Mesh Using Muscle-Derived Stem Cells in an Animal Model[J]. Regenerative Engineering and Translational Medicine, 2022, 8(4):535-544.
[24]
Zhang Z, Zhu L, Hu W, et al. Polypropylene mesh combined with electrospun poly(L-lactic acid) membrane in situ releasing sirolimus and its anti-adhesion efficiency in rat hernia repair[J].Colloids Surf B Biointerfaces, 2022, 218:112772.
[25]
Guo Z, Zhang F, Wu H, et al. Preparation of antiadhesion polypropylene mesh using bacterial cellulose combined with chitosan hydrogel application in rat abdominal incisional hernia[J]. Int J Abdom Wall Hernia Surg, 2023, 6(4):227-235.
[26]
Oh WT, Lee JB, Choi W, et al. Shape Memory Tube Plug for Fine-control of Intraocular Pressure by Glaucoma Devices[J].ACS Biomater Sci Eng, 2020, 6(7):3784-3790.
[27]
Ha H, Lee CH, Lee KS, et al. Shape-Configurable Mesh for Hernia Repair by Synchronizing Anisotropic Body Motion[J]. Small, 2023,19(47):e2303325.
[28]
Karmiris NI, Albanis Z, Zafeirakis A, et al. The increased angiogenic capacity and decreased inflammatory response when a mesh is used in combination with an omental flap. A prospective experimental study[J]. J Plast Reconstr Aesthet Surg, 2023, 86:261-268.
[29]
Yewande A, Chamilka M, Michael S, et al. Mesh and plane selection:a summary of options and outcomes[J]. Plast Aesthet Res, 2020,2020(2):e70789..
[30]
Ponce Leon F, Takiya CM, da Costa JR, et al. Different cellular and immunohistochemical abdominal wall cicatrization parameters evaluation in comparison with sublay, onlay, and ipom technique in an experimental rat model[J]. Hernia, 2023, 27(4):999-1015.
[1] 李琚, 陈强, 张洵, 谢丽婷, 蒋天安. 新型微纳秒脉冲电场消融仪器的研发及动物实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(12): 1124-1131.
[2] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[3] 金雪梅, 安玮, 郭莎, 阿拉发提·何亚斯丁, 加娜尔·吐根别克, 姚志涛. 年轻家兔髁突吸收动物模型的建立与研究[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(01): 16-24.
[4] 李涛, 朱含放, 李世拥. 我国腹腔镜疝修补术式选择与原则[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 362-365.
[5] 罗文, 王勇, 段鑫, 石念, 柯文杰, 武英翔, 杜晨阳. 组织结构分离技术联合完全腹膜外桥接修补手术治疗成人巨大腹壁切口疝的临床研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(02): 178-182.
[6] 储修峰, 王苗锋, 周劲松, 李铧杰. 完全内镜下sublay 修补与腹腔镜下腹腔内补片修补对中小型腹壁疝的疗效比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(02): 195-201.
[7] 黄雨琳, 嵇振岭. 不同疝补片对伤口愈合胶原蛋白沉积的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(01): 25-30.
[8] 嵇振岭, 陈杰, 唐健雄. 重视复杂腹壁疝手术并发症的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 601-606.
[9] 江志鹏, 钟克力, 陈双. 复杂腹壁疝手术后腹腔高压与腹腔间室综合征的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 612-615.
[10] 庞茜茜, 刘云宁, 刘斐, 赵学萍, 胡亚丽, 刘克勤. 多西环素联合左氧氟沙星治疗鲍曼不动杆菌肺炎[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 15-22.
[11] 宗晓龙, 林源希, 张天翼, 刘雅茹, 李端阳, 李真玉. 紫檀芪通过抑制炎症反应和NETs 形成对减轻脓毒症小鼠急性肺损伤的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 29-35.
[12] 郑秉礼, 彭洁, 孟塬. KRAS基因突变对可切除胰腺癌临床预后的影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 456-462.
[13] 袁佳莹, 范小彧, 费博, 喻春钊. 结直肠癌肝转移研究模型的现状及展望[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(01): 40-46.
[14] 李孟坤, 张雅宾, 敖强国, 何许巍, 刘洋, 陈泓宇, 程庆砾. 三种急性肾脏病小鼠模型的建立及肾脏功能和病理比较[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 18-25.
[15] 刘震宇, 高飞, 张文刚, 李海洋, 冯建聪, 柴宁莉, 令狐恩强. 一种有效的食管ESD 术后狭窄动物模型的构建方法[J/OL]. 中华胃肠内镜电子杂志, 2025, 12(01): 35-40.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?