[1] |
中华医学会肿瘤学分会,中国研究型医院学会腹膜后与盆底疾病专业委员会,北京医师协会腹膜后肿瘤专科医师分会. 腹膜后肿瘤诊治专家共识(2025版)[J]. 中华普通外科杂志, 2025, 40(5): 330-337.
|
[2] |
刘颂,宋鹏,孙锋, 等. 原发性腹膜后肿瘤的诊治与预后分析[J]. 中华普通外科杂志, 2023, 38(12): 900-904.
|
[3] |
丁玉芹,石洪成,季正标. 影像学检查在腹膜后肿瘤诊治中的应用及相关专家共识解读[J]. 外科理论与实践, 2022, 27(6): 511-516.
|
[4] |
Spalato-Ceruso M, Ghazzi NE, Italiano A. New strategies in soft tissue sarcoma treatment[J]. J Hematol Oncol, 2024, 17(1): 76.
|
[5] |
Saerens M, Brusselaers N, Rottey S, et al. Immune checkpoint inhibitors in treatment of soft-tissue sarcoma: A systematic review and meta-analysis[J]. Eur J Cancer, 2021, 152: 165-182.
|
[6] |
Geirhos R, Rubisch P, Michaelis C, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness[J]. arXiv, 2018, arXiv: 1811. 12231.
|
[7] |
Crombé A, Roulleau-Dugage M, Italiano A. The diagnosis, classification, and treatment of sarcoma in this era of artificial intelligence and immunotherapy[J]. Cancer Commun(Lond), 2022, 42(12): 1288-1313.
|
[8] |
杨龙雨禾,王跃强,招云亮, 等. 人工智能辅助临床决策在泌尿系肿瘤的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(2): 178-182.
|
[9] |
Schmitz E, Nessim C. Retroperitoneal Sarcoma Care in 2021[J]. Cancers, 2022, 14(5): 1293.
|
[10] |
匡婕,唐翠,顾闻, 等. 原发性腹膜后肿瘤临床及影像学表现分析并文献复习[J]. 中国CT和MRI杂志, 2025, 23(3): 157-160.
|
[11] |
中国临床肿瘤学会指南工作委员会. 中国临床肿瘤学会(CSCO)软组织肉瘤诊疗指南-2022[M]. 北京: 人民卫生出版社, 2022.
|
[12] |
von Mehren M, Kane JM, Agulnik M, et al. Soft Tissue Sarcoma, Version 2. 2022, NCCN Clinical Practice Guidelines in Oncology[J]. JNCCN, 2022, 20(7): 815-833.
|
[13] |
Bestic JM, Kransdorf MJ, White LM, et al. Sclerosing variant of well-differentiated liposarcoma: relative prevalence and spectrum of CT and MRI features[J]. AJR, 2013, 201(1): 154-161.
|
[14] |
中华医学会数字医学分会,中国研究型医院学会数字医学临床外科专业委员会. 腹膜后肿瘤三维可视化精准诊治专家共识(2018版)[J]. 中国实用外科杂志, 2018, 38(12): 1347-1353.
|
[15] |
Porrello G, Cannella R, Randazzo A, et al. CT and MR Imaging of Retroperitoneal Sarcomas: A Practical Guide for the Radiologist[J]. Cancers, 2023, 15(11): 2985.
|
[16] |
Zhou Y, Zhan Y, Zhao J, et al. CT-based radiomics deep learning signatures for non-invasive prediction of metastatic potential in pheochromocytoma and paraganglioma: a multicohort study[J]. Insights Imaging, 2025, 16(1): 81.
|
[17] |
Tian Z, Cheng Y, Zhao S, et al. Deep learning radiomics-based prediction model of metachronous distant metastasis following curative resection for retroperitoneal leiomyosarcoma: a bicentric study[J]. Cancer Imaging, 2024, 24(1): 52.
|
[18] |
Sun S, Yao W, Wang Y, et al. Development and validation of machine-learning models for the difficulty of retroperitoneal laparoscopic adrenalectomy based on radiomics[J]. Front Endocrinol (Lausanne), 2023, 14: 1265790.
|
[19] |
Gronchi A, Miah AB, Dei Tos AP, et al. Soft tissue and visceral sarcomas: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up☆[J]. Ann Oncol, 2021, 32(11): 1348-1365.
|
[20] |
Alimu P, Fang C, Han Y, et al. Artificial intelligence with a deep learning network for the quantification and distinction of functional adrenal tumors based on contrast-enhanced CT images[J]. Quant Imaging Med Surg, 2023, 13(4): 2675-2687.
|
[21] |
Tirotta F, Bacon A, Collins S, et al. Primary retroperitoneal sarcoma: A comparison of survival outcomes in specialist and non-specialist sarcoma centres[J]. Eur J Cancer, 2023, 188: 20-28.
|
[22] |
Fiore M, Sarre-Lazcano C, Smith M, et al. Primary pelvic soft tissue sarcomas(PELVISARC): outcomes from the TransAtlantic Australasian Retroperitoneal Sarcoma Working Group(TARPSWG) [J]. Br J Surg, 2024, 111(5): znae128.
|
[23] |
Hong SH, Kim KA, Woo OH, et al. Dedifferentiated liposarcoma of retroperitoneum: spectrum of imaging findings in 15 patients[J]. Clinical Imaging, 2010, 34(3): 203-210.
|
[24] |
Morag Y, Yablon C, Brigido MK, et al. Imaging appearance of well-differentiated liposarcomas with myxoid stroma[J]. Skeletal Radiology, 2018, 47(10): 1371-1382.
|
[25] |
Blackledge MD, Winfield JM, Miah A, et al. Supervised Machine- Learning Enables Segmentation and Evaluation of Heterogeneous Post-treatment Changes in Multi-Parametric MRI of Soft-Tissue Sarcoma[J]. Front Oncol, 2019, 9: 941.
|
[26] |
Arthur A, Johnston EW, Winfield JM, et al. Virtual Biopsy in Soft Tissue Sarcoma. How Close Are We?[J]. Front Oncol, 12: 892620.
|
[27] |
Choi Y, Yu W, Nagarajan MB, et al. Translating AI to Clinical Practice: Overcoming Data Shift with Explainability[J]. Radiographics, 2023, 43(5): e220105.
|
[28] |
Almond LM, Tirotta F, Tattersall H, et al. Diagnostic accuracy of percutaneous biopsy in retroperitoneal sarcoma[J]. Br J Surg, 2019, 106(4): 395-403.
|
[29] |
Cui M, Zhang DY. Artificial intelligence and computational pathology[J]. Lab Invest, 2021, 101(4): 412-422.
|
[30] |
姜永军,李红玲,阮萍, 等. 基于深度学习的多亚型腹膜后软组织肉瘤诊断[J]. 中山大学学报(自然科学版中英文), 2025, 64(3): 156-164.
|
[31] |
Zhao Z, Chen X, Xu J, et al. Whole exome sequencing of well-differentiated liposarcoma and dedifferentiated liposarcoma in older woman: a case report[J]. Front Med(Lausanne), 2023, 10: 1237246.
|
[32] |
Álvarez Álvarez R, Manzano A, Agra Pujol C, et al. Updated Review and Clinical Recommendations for the Diagnosis and Treatment of Patients with Retroperitoneal Sarcoma by the Spanish Sarcoma Research Group(GEIS)[J]. Cancers(Basel), 2023, 15(12): 3194.
|
[33] |
Rahmati R, Zarimeidani F, Ahmadi F, et al. Identification of novel diagnostic and prognostic microRNAs in sarcoma on TCGA dataset: bioinformatics and machine learning approach[J]. Sci Rep, 2025, 15(1): 7521.
|
[34] |
Ren J, Zhou X, Guo W, et al. Identification of Methylation Signatures and Rules for Sarcoma Subtypes by Machine Learning Methods[J]. Biomed Res Int, 2022, 2022: 5297235.
|
[35] |
van IJzendoorn DGP, Szuhai K, Briaire-de Bruijn IH, et al. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas[J]. PLoS Comput Biol, 2019, 15(2): e1006826.
|
[36] |
Wang M, Li Z, Zeng S, et al. Explainable machine learning predicts survival of retroperitoneal liposarcoma: A study based on the SEER database and external validation in China[J]. Cancer Med, 2024, 13(11): e7324.
|
[37] |
Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence[J]. Lancet Oncol, 2019, 20(5): e253-e261.
|
[38] |
He X, Liu X, Zuo F, et al. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine[J]. Semin Cancer Biol, 2023, 88: 187-200.
|
[39] |
Reel PS, Reel S, Pearson E, et al. Using machine learning approaches for multi-omics data analysis: A review[J]. Biotechnol Adv, 2021, 49: 107739.
|
[40] |
Yang Y, Zhou Y, Zhou C, et al. Novel computer aided diagnostic models on multimodality medical images to differentiate well differentiated liposarcomas from lipomas approached by deep learning methods[J]. Orphanet J Rare Dis, 2022, 17(1): 158.
|
[41] |
Li X, Ding R, Liu Z, et al. A predictive system comprising serum microRNAs and radiomics for residual retroperitoneal masses in metastatic nonseminomatous germ cell tumors[J]. Cell Rep Med, 2024, 5(12): 101843.
|
[42] |
Xu J, Miao L, Wang CX, et al. Preoperative Contrast-Enhanced CT-Based Deep Learning Radiomics Model for Distinguishing Retroperitoneal Lipomas and WellDifferentiated Liposarcomas[J]. Acad Radiol, 2024, 31(12): 5042-5053.
|
[43] |
Petch J, Di S, Nelson W. Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology[J]. Can J Cardiol, 2022, 38(2): 204-213.
|
[44] |
杨爱佳,隋昌盛,乔吉灵, 等. 基于人工智能算法的多组学技术在胃癌诊疗中的研究进展[J]. 中国肿瘤临床, 2025, 52(7): 372-378.
|
[45] |
Zhou B, Khosla A, Lapedriza A. et al. Learning Deep Features for Discriminative Localization: 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR)[C]. Las Vegas: IEEE, 2016: 2921-2929.
|
[46] |
Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization: 2017 IEEE International Conference on Computer Vision(ICCV)[C]. Venice: IEEE, 2017: 618-626.
|