切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 371 -376. doi: 10.3877/cma.j.issn.1674-392X.2025.04.002

所属专题: 文献

腹膜后肿瘤专题综述

人工智能在腹膜后肿瘤精准诊疗中的研究进展
詹彧鸣1,2,3, 张翔1,2,3, 翁山耕1,2,3,()   
  1. 1350005 福州,福建医科大学附属第一医院肝胆胰外科、疝外科
    2350005 福州,福建医科大学附属第一医院福建省腹部外科研究所
    3350005 福州,福建医科大学附属第一医院福建省肝胆胰及胃肠恶性肿瘤精准治疗临床医学研究中心
  • 收稿日期:2025-06-30 出版日期:2025-08-18
  • 通信作者: 翁山耕
  • 基金资助:
    国家自然科学基金(82370521); 福建省财政专项(BPB-2023WSG,BPB-2024WSG)

Research progress of artificial intelligence in the precise diagnosis and treatment of retroperitoneal tumors

Yuming Zhan1,2,3, Xiang Zhang1,2,3, Shangeng Weng1,2,3,()   

  1. 1Department of Hepatobiliary and Pancreatic Surgery & Hernia Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
    2Fujian Abdominal Surgery Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
    3Cinical Research Center for Hepatobiliary Pancreatic and Gastrointestinal Malignant Tumors Precise Treatment of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
  • Received:2025-06-30 Published:2025-08-18
  • Corresponding author: Shangeng Weng
引用本文:

詹彧鸣, 张翔, 翁山耕. 人工智能在腹膜后肿瘤精准诊疗中的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 371-376.

Yuming Zhan, Xiang Zhang, Shangeng Weng. Research progress of artificial intelligence in the precise diagnosis and treatment of retroperitoneal tumors[J/OL]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2025, 19(04): 371-376.

腹膜后肿瘤(RPT)是一种原发于腹膜后间隙的肿瘤,其解剖位置深、来源复杂、异质性高,缺少特异临床表现,病理分型繁多,但亚型间缺乏特异性影像学特征,难以实现早期精准诊断。手术切除是治疗RPT的主要手段,其药物治疗效果有限。人工智能技术可实现自动化特征提取及整合多维度数据,为RPT精准诊疗与预后评估提供革新路径。本文拟综述人工智能在RPT影像、病理及分子诊断中的应用,以及融合多模态多组学的研究进展,以期呈现其在RPT精准诊疗的发展前景。

Retroperitoneal tumors (RPT), originating from the retroperitoneal space, are characterized by their deep anatomical location, complex origins, and high heterogeneity. These tumors often lack specific clinical manifestations and exhibit diverse pathological subtypes, yet they share similar imaging features across subtypes, making it difficult to achieve early and precise diagnosis. Surgical resection remains the primary treatment for RPT, while pharmacological interventions have shown limited efficacy. Artificial intelligence technologies can offer innovative pathways for RPT precise diagnosis and prognosis assessment through automated feature extraction and integration of multi-dimensional data. This review aims to summarize the applications of artificial intelligence in RPT imaging, pathology, and molecular diagnostics, as well as the advancements in multi-modal and multi-omics integration, thereby highlighting its development prospects in precise diagnosis and treatment for RPT.

图1 人工智能在腹膜后肿瘤精准诊疗中的研究进展的思维导图注:PET-CT为正电子发射计算机体层成像。
[1]
中华医学会肿瘤学分会,中国研究型医院学会腹膜后与盆底疾病专业委员会,北京医师协会腹膜后肿瘤专科医师分会. 腹膜后肿瘤诊治专家共识(2025版)[J]. 中华普通外科杂志, 2025, 40(5): 330-337.
[2]
刘颂,宋鹏,孙锋, 等. 原发性腹膜后肿瘤的诊治与预后分析[J]. 中华普通外科杂志, 2023, 38(12): 900-904.
[3]
丁玉芹,石洪成,季正标. 影像学检查在腹膜后肿瘤诊治中的应用及相关专家共识解读[J]. 外科理论与实践, 2022, 27(6): 511-516.
[4]
Spalato-Ceruso M, Ghazzi NE, Italiano A. New strategies in soft tissue sarcoma treatment[J]. J Hematol Oncol, 2024, 17(1): 76.
[5]
Saerens M, Brusselaers N, Rottey S, et al. Immune checkpoint inhibitors in treatment of soft-tissue sarcoma: A systematic review and meta-analysis[J]. Eur J Cancer, 2021, 152: 165-182.
[6]
Geirhos R, Rubisch P, Michaelis C, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness[J]. arXiv, 2018, arXiv: 1811. 12231.
[7]
Crombé A, Roulleau-Dugage M, Italiano A. The diagnosis, classification, and treatment of sarcoma in this era of artificial intelligence and immunotherapy[J]. Cancer Commun(Lond), 2022, 42(12): 1288-1313.
[8]
杨龙雨禾,王跃强,招云亮, 等. 人工智能辅助临床决策在泌尿系肿瘤的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(2): 178-182.
[9]
Schmitz E, Nessim C. Retroperitoneal Sarcoma Care in 2021[J]. Cancers, 2022, 14(5): 1293.
[10]
匡婕,唐翠,顾闻, 等. 原发性腹膜后肿瘤临床及影像学表现分析并文献复习[J]. 中国CT和MRI杂志, 2025, 23(3): 157-160.
[11]
中国临床肿瘤学会指南工作委员会. 中国临床肿瘤学会(CSCO)软组织肉瘤诊疗指南-2022[M]. 北京: 人民卫生出版社, 2022.
[12]
von Mehren M, Kane JM, Agulnik M, et al. Soft Tissue Sarcoma, Version 2. 2022, NCCN Clinical Practice Guidelines in Oncology[J]. JNCCN, 2022, 20(7): 815-833.
[13]
Bestic JM, Kransdorf MJ, White LM, et al. Sclerosing variant of well-differentiated liposarcoma: relative prevalence and spectrum of CT and MRI features[J]. AJR, 2013, 201(1): 154-161.
[14]
中华医学会数字医学分会,中国研究型医院学会数字医学临床外科专业委员会. 腹膜后肿瘤三维可视化精准诊治专家共识(2018版)[J]. 中国实用外科杂志, 2018, 38(12): 1347-1353.
[15]
Porrello G, Cannella R, Randazzo A, et al. CT and MR Imaging of Retroperitoneal Sarcomas: A Practical Guide for the Radiologist[J]. Cancers, 2023, 15(11): 2985.
[16]
Zhou Y, Zhan Y, Zhao J, et al. CT-based radiomics deep learning signatures for non-invasive prediction of metastatic potential in pheochromocytoma and paraganglioma: a multicohort study[J]. Insights Imaging, 2025, 16(1): 81.
[17]
Tian Z, Cheng Y, Zhao S, et al. Deep learning radiomics-based prediction model of metachronous distant metastasis following curative resection for retroperitoneal leiomyosarcoma: a bicentric study[J]. Cancer Imaging, 2024, 24(1): 52.
[18]
Sun S, Yao W, Wang Y, et al. Development and validation of machine-learning models for the difficulty of retroperitoneal laparoscopic adrenalectomy based on radiomics[J]. Front Endocrinol (Lausanne), 2023, 14: 1265790.
[19]
Gronchi A, Miah AB, Dei Tos AP, et al. Soft tissue and visceral sarcomas: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2021, 32(11): 1348-1365.
[20]
Alimu P, Fang C, Han Y, et al. Artificial intelligence with a deep learning network for the quantification and distinction of functional adrenal tumors based on contrast-enhanced CT images[J]. Quant Imaging Med Surg, 2023, 13(4): 2675-2687.
[21]
Tirotta F, Bacon A, Collins S, et al. Primary retroperitoneal sarcoma: A comparison of survival outcomes in specialist and non-specialist sarcoma centres[J]. Eur J Cancer, 2023, 188: 20-28.
[22]
Fiore M, Sarre-Lazcano C, Smith M, et al. Primary pelvic soft tissue sarcomas(PELVISARC): outcomes from the TransAtlantic Australasian Retroperitoneal Sarcoma Working Group(TARPSWG) [J]. Br J Surg, 2024, 111(5): znae128.
[23]
Hong SH, Kim KA, Woo OH, et al. Dedifferentiated liposarcoma of retroperitoneum: spectrum of imaging findings in 15 patients[J]. Clinical Imaging, 2010, 34(3): 203-210.
[24]
Morag Y, Yablon C, Brigido MK, et al. Imaging appearance of well-differentiated liposarcomas with myxoid stroma[J]. Skeletal Radiology, 2018, 47(10): 1371-1382.
[25]
Blackledge MD, Winfield JM, Miah A, et al. Supervised Machine- Learning Enables Segmentation and Evaluation of Heterogeneous Post-treatment Changes in Multi-Parametric MRI of Soft-Tissue Sarcoma[J]. Front Oncol, 2019, 9: 941.
[26]
Arthur A, Johnston EW, Winfield JM, et al. Virtual Biopsy in Soft Tissue Sarcoma. How Close Are We?[J]. Front Oncol, 12: 892620.
[27]
Choi Y, Yu W, Nagarajan MB, et al. Translating AI to Clinical Practice: Overcoming Data Shift with Explainability[J]. Radiographics, 2023, 43(5): e220105.
[28]
Almond LM, Tirotta F, Tattersall H, et al. Diagnostic accuracy of percutaneous biopsy in retroperitoneal sarcoma[J]. Br J Surg, 2019, 106(4): 395-403.
[29]
Cui M, Zhang DY. Artificial intelligence and computational pathology[J]. Lab Invest, 2021, 101(4): 412-422.
[30]
姜永军,李红玲,阮萍, 等. 基于深度学习的多亚型腹膜后软组织肉瘤诊断[J]. 中山大学学报(自然科学版中英文), 2025, 64(3): 156-164.
[31]
Zhao Z, Chen X, Xu J, et al. Whole exome sequencing of well-differentiated liposarcoma and dedifferentiated liposarcoma in older woman: a case report[J]. Front Med(Lausanne), 2023, 10: 1237246.
[32]
Álvarez Álvarez R, Manzano A, Agra Pujol C, et al. Updated Review and Clinical Recommendations for the Diagnosis and Treatment of Patients with Retroperitoneal Sarcoma by the Spanish Sarcoma Research Group(GEIS)[J]. Cancers(Basel), 2023, 15(12): 3194.
[33]
Rahmati R, Zarimeidani F, Ahmadi F, et al. Identification of novel diagnostic and prognostic microRNAs in sarcoma on TCGA dataset: bioinformatics and machine learning approach[J]. Sci Rep, 2025, 15(1): 7521.
[34]
Ren J, Zhou X, Guo W, et al. Identification of Methylation Signatures and Rules for Sarcoma Subtypes by Machine Learning Methods[J]. Biomed Res Int, 2022, 2022: 5297235.
[35]
van IJzendoorn DGP, Szuhai K, Briaire-de Bruijn IH, et al. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas[J]. PLoS Comput Biol, 2019, 15(2): e1006826.
[36]
Wang M, Li Z, Zeng S, et al. Explainable machine learning predicts survival of retroperitoneal liposarcoma: A study based on the SEER database and external validation in China[J]. Cancer Med, 2024, 13(11): e7324.
[37]
Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence[J]. Lancet Oncol, 2019, 20(5): e253-e261.
[38]
He X, Liu X, Zuo F, et al. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine[J]. Semin Cancer Biol, 2023, 88: 187-200.
[39]
Reel PS, Reel S, Pearson E, et al. Using machine learning approaches for multi-omics data analysis: A review[J]. Biotechnol Adv, 2021, 49: 107739.
[40]
Yang Y, Zhou Y, Zhou C, et al. Novel computer aided diagnostic models on multimodality medical images to differentiate well differentiated liposarcomas from lipomas approached by deep learning methods[J]. Orphanet J Rare Dis, 2022, 17(1): 158.
[41]
Li X, Ding R, Liu Z, et al. A predictive system comprising serum microRNAs and radiomics for residual retroperitoneal masses in metastatic nonseminomatous germ cell tumors[J]. Cell Rep Med, 2024, 5(12): 101843.
[42]
Xu J, Miao L, Wang CX, et al. Preoperative Contrast-Enhanced CT-Based Deep Learning Radiomics Model for Distinguishing Retroperitoneal Lipomas and WellDifferentiated Liposarcomas[J]. Acad Radiol, 2024, 31(12): 5042-5053.
[43]
Petch J, Di S, Nelson W. Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology[J]. Can J Cardiol, 2022, 38(2): 204-213.
[44]
杨爱佳,隋昌盛,乔吉灵, 等. 基于人工智能算法的多组学技术在胃癌诊疗中的研究进展[J]. 中国肿瘤临床, 2025, 52(7): 372-378.
[45]
Zhou B, Khosla A, Lapedriza A. et al. Learning Deep Features for Discriminative Localization: 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR)[C]. Las Vegas: IEEE, 2016: 2921-2929.
[46]
Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization: 2017 IEEE International Conference on Computer Vision(ICCV)[C]. Venice: IEEE, 2017: 618-626.
[1] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[2] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[3] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[4] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[5] 黄世旺, 郄云凯, 胡海龙. 人工智能时代尿液无创检测方法在膀胱癌诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 283-287.
[6] 曾弘. 膀胱癌病理报告中常用免疫组化标记物的解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 296-302.
[7] 朱嘉亿, 杨福全. 原发性腹膜后肿瘤诊治进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 383-389.
[8] 张海强, 周保军. 腹膜后肿瘤临床诊疗现状[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 390-395.
[9] 张艳云, 白起之, 张健伟, 郭大志, 马丹, 龚明福. 基于AI 的CT 定量用于肺结节性质及浸润程度的影像学分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 411-415.
[10] 希龙夫, 薛荣泉. 人工智能在肝胆胰肿瘤诊治中应用与进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 166-171.
[11] 赵婷, 易晓芳. 人工智能在子宫腺肌病微创治疗中的应用进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 172-176.
[12] 施薇薇, 楼微华, 狄文, 严斌, 张楠, 王酉. 人工智能驱动的腔镜外科发展:研究进展与未来趋势[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 177-183.
[13] 郭寒川, 王乾宇, 吴斌. 人工智能在神经识别的研究进展及直肠癌自主神经保护的应用[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 273-276.
[14] 王玲洁, 王瑷萍, 李朝军, 丁跃有, 杨德业, 赵清, 崔兆强, 王京昆, 王宏宇. 心脏和血管健康技术创新研发策略专家共识(2024第一次报告,上海)[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 323-336.
[15] 马也, 瞿航, 王苇. 人工智能在脑血管病影像评价中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 211-215.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?