切换至 "中华医学电子期刊资源库"

中华疝和腹壁外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 15 -19. doi: 10.3877/cma.j.issn.1674-392X.2023.01.005

临床论著

腹壁切口疝修补术后补片感染列线图预测模型构建
邢晓伟1, 张荣杰2, 陈杰1,()   
  1. 1. 100043 首都医科大学附属北京朝阳医院疝和腹壁外科
    2. 100043 首都医科大学附属北京朝阳医院泌尿外科
  • 收稿日期:2022-05-09 出版日期:2023-02-18
  • 通信作者: 陈杰

A predictive nomogram for the risk of mesh infection after incisional hernia repair

Xiaowei Xing1, Rongjie Zhang2, Jie Chen1,()   

  1. 1. Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
    2. Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
  • Received:2022-05-09 Published:2023-02-18
  • Corresponding author: Jie Chen
引用本文:

邢晓伟, 张荣杰, 陈杰. 腹壁切口疝修补术后补片感染列线图预测模型构建[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(01): 15-19.

Xiaowei Xing, Rongjie Zhang, Jie Chen. A predictive nomogram for the risk of mesh infection after incisional hernia repair[J/OL]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2023, 17(01): 15-19.

目的

分析腹壁切口疝修补术后补片感染的危险因素,建立切口疝患者补片感染的预测模型,为临床预测切口疝修补术后发生补片感染提供一种可视化评价工具。

方法

回顾性分析2016年1月至2018年12月在首都医科大学附属北京朝阳医院就诊的475例切口疝患者的临床资料,收集患者的一般资料、手术资料、术后恢复情况,随访补片感染情况。使用Lasso回归筛选预测因子,在此基础上通过多因素Logistic回归进一步分析并建立列线图预测模型,采用受试者工作特征曲线下面积评估模型的预测效力。

结果

475例接受切口疝修补手术的患者中有11例出现补片感染,发生率为2.3%。Lasso回归结合多因素Logistic回归分析结果显示,体质量指数(OR=1.206,95% CI 1.034~1.407)、糖尿病史(OR=6.484,95% CI 1.233~34.108)、术后外科手术部位感染(OR=37.095,95% CI 4.253~323.532)是切口疝患者发生补片感染的影响因素(P<0.05),利用上述变量建立列线图预测模型,列线图预测模型预测补片感染发生AUC为0.880(95% CI 0.785~0.975)。

结论

本研究成功建立一种具有良好预测效力的列线图预测模型,有助于提高对补片感染高危切口疝患者的早期鉴别能力,为改善切口疝患者预后提供帮助。

Objective

To explore the risk factors of mesh infection after incisional hernia repair, and to develop a predictive nomogram as visualized tool for clinical prediction of mesh infection.

Methods

475 patients with incisional hernias were retrospectively selected from Beijing Chaoyang Hospital of Capital Medical University from January of 2016 to December of 2018. Patients' basic information, surgery information and recovery information after surgery were collected, and mesh infection information was followed up. Predictors of mesh infection were screened by Lasso regression analysis, and further analyzed by multivariate logistic regression analysis. Then the final determined ones were applied to develop a predictive nomogram. The area under the ROC curve (AUC) was used to evaluate the predictive utility of the nomogram.

Results

Among the 475 cases, 11 developed a mesh infection; the incidence was 2.3%. The findings of Lasso regression with multivariate logistic analysis demonstrated that body mass index (BMI) [OR=1.206, 95% CI (1.034, 1.407)]、diabetes [OR=6.484, 95% CI (1.233, 34.108)] and surgical site infection (SSI) [OR=37.095, 95% CI (4.253, 323.532)] were associated with mesh infection. The predictive nomogram was established using the above-mentioned variables. The AUC of the nomogram was 0.880 [95% CI (0.785, 0.975)].

Conclusion

We successfully established a predictive nomogram with high accuracy, which may be used to improve the early identification of mesh infection and the clinical outcome of patients with incisional hernias.

表1 无补片感染患者与补片感染患者一般资料比较[例(%)]
图1 Lasso回归进行临床特征筛选注:A为18个临床特征的系数曲线;B为Lasso回归选择最适合的临床特征,最小λ值为0.005 72,此时模型最优,筛选的7个预测变量为:体质量指数、糖尿病史、住院时间、手术时间、术中肠切除、术中肠修补以及术后手术部位感染情况
表2 变量赋值表
表3 切口疝患者发生补片感染的多因素Logistic回归分析
图2 切口疝患者发生补片感染的风险预测列线图注:根据变量进行赋分,每个变量的赋值点分别对应相应的得分,将各个变量的得分相加,得到总分,即可得出补片感染的预测概率。BMI体质量指数;SSI外科手术部位感染
图3 列线图预测模型预测切口疝患者发生补片感染风险的受试者工作特征曲线注:ROC受试者工作特征;AUC曲线下面积
[1]
Rosen MJ, Krpata DM, Petro CC, et al. Biologic vs Synthetic Mesh for Single-stage Repair of Contaminated Ventral Hernias: A Randomized Clinical Trial[J]. JAMA Surg, 2022, 157(4): 293-301.
[2]
Maatouk M, Ben Safta Y, Mabrouk A, et al. Surgical site infection in mesh repair for ventral hernia in contaminated field: A systematic review and meta-analysis [J]. Ann Med Surg (Lond), 2021, 63: 102173.
[3]
Kyriakoulis K N, Mallico E J. Management of Synthetic Mesh Infection With Open Resection and Laparoscopic Ventral Hernia Repair Using Biosynthetic Prosthetic Material [J]. Am Surg, 2022, 88(8): 1896-1897.
[4]
Ouedraogo S, Kambire J L, Ouedraogo S, et al. Surgical Site Infection after Digestive Surgery: Diagnosis and Treatment in a Context of Limited Resources [J]. Surg Infect (Larchmt), 2020, 21(6): 547-551.
[5]
Pande T, Naidu C S. Mesh infection in cases of polypropylene mesh hernioplasty[J]. Hernia, 2020, 24(4): 849-856.
[6]
Oprea V, Buia F, Gheorghescu D, et al. Chronic Mesh Infection after Incisional Hernia Repair. Factors Influencing Negative Outcomes of Complete Mesh Removal[J]. Chirurgia(Bucur), 2021, 116(3): 284-293.
[7]
Li J, Wang Y, Shao X, et al. The salvage of mesh infection after hernia repair with the use of negative pressure wound therapy (NPWT), a systematic review[J]. ANZ J Surg, 2022, 92(10): 2448-2456.
[8]
Mavros MN, Athanasiou S, Alexiou VG, et al. Risk factors for mesh-related infections after hernia repair surgery: a meta-analysis of cohort studies[J]. World J Surg, 2011, 35(11): 2389-2398.
[9]
Oberg S, Andresen K, Rosenberg J. Etiology of Inguinal Hernias: A Comprehensive Review[J]. Front Surg, 2017, 4: 52.
[10]
Olsen MA, Nickel KB, Wallace AE, et al. Stratification of surgical site infection by operative factors and comparison of infection rates after hernia repair[J]. Infect Control Hosp Epidemiol, 2015, 36(3): 329-335.
[11]
Rosen MJ, Bauer JJ, Harmaty M, et al. Multicenter, Prospective, Longitudinal Study of the Recurrence, Surgical Site Infection, and Quality of Life After Contaminated Ventral Hernia Repair Using Biosynthetic Absorbable Mesh: The COBRA Study[J]. Ann Surg, 2017, 265(1): 205-211.
[12]
Carbonell AM, Criss CN, Cobb WS, et al. Outcomes of synthetic mesh in contaminated ventral hernia repairs[J]. J Am Coll Surg, 2013, 217(6): 991-998.
[13]
Cobb WS, Carbonell AM, Kalbaugh CL, et al. Infection risk of open placement of intraperitoneal composite mesh[J]. Am Surg, 2009, 75(9): 762-767; discussion 7-8.
[14]
Quiroga-Centeno AC, Quiroga-Centeno CA, Guerrero-Macias S, et al. Systematic review and meta-analysis of risk factors for Mesh infection following Abdominal Wall Hernia Repair Surgery[J]. Am J Surg, 2022, 224(1): 239-246.
[15]
Kanitra JJ, Hess AL, Haan PS, et al. Hernia recurrence and infection rate in elective complex abdominal wall repair using biologic mesh[J]. BMC Surg, 2019, 19(1): 174.
[16]
Yang H, Xiong Y, Chen J, et al. Study of mesh infection management following inguinal hernioplasty with an analysis of risk factors: a 10-year experience[J]. Hernia, 2020, 24(2): 301-305.
[17]
El-Gazzaz GH, Farag SH, El-Sayd MA, et al. The use of synthetic mesh in patients undergoing ventral hernia repair during colorectal resection: risk of infection and recurrence[J]. Asian J Surg, 2012, 35(4): 149-153.
[18]
Mazaki T, Mado K, Masuda H, et al. A randomized trial of antibiotic prophylaxis for the prevention of surgical site infection after open mesh-plug hernia repair[J]. Am J Surg, 2014, 207(4): 476-484.
[19]
Dayton MT, Buchele BA, Shirazi SS, et al. Use of an absorbable mesh to repair contaminated abdominal-wall defects[J]. Arch Surg, 1986, 121(8): 954-960.
[20]
Michael RA, Angela MK, Korene KG, et al. Optimal management of mesh infection: Evidence and treatment options[J]. Int J Abdom Wall Hernia Surg, 2018, 1(2): 42-49.
[1] 农云洁, 黄小桂, 黄裕兰, 农恒荣. 超声在多重肺部感染诊断中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 872-876.
[2] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[3] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[4] 刘柏隆, 周祥福. 经阴道膀胱膨出前盆补片修补术 + 阴道后壁修补术[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 128-128.
[5] 曹能琦, 张恒, 郑立锋, 陶庆松, 嵇振岭. Ad-Hoc 自裁剪补片用于造口旁疝Sugarbaker 修补术[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 620-623.
[6] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[7] 林凯, 潘勇, 赵高平, 杨春. 造口还纳术后切口疝的危险因素分析与预防策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 634-638.
[8] 顾熙, 徐子宇, 周澍, 张吴楼, 张业鹏, 林昊, 刘宗航, 嵇振岭, 郑立锋. 腹股沟疝腹膜前间隙无张力修补术后补片感染10 例报道[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 665-669.
[9] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[10] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[11] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[12] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[13] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[14] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[15] 黄圣楷, 许斌, 苏健, 孙龙. 海南省2010~2020年乙型肝炎流行趋势的时间序列分析及预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 555-561.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?