[1] |
Li ZY, Zhu L, Xu T, et al. An epidemiologic study of pelvic organ prolapse in urban Chinese women: a population-based sample in China[J]. Zhonghua Yi Xue Za Zhi, 2019, 99(11): 857-861.
|
[2] |
Brown JS, Waetjen LE, Subak LL, et al. Pelvic organ prolapse surgery in the United States, 1997[J]. Am J Obstet Gynecol, 2002, 186(4): 712-716.
|
[3] |
Ko KJ, Lee KS. Current surgical management of pelvic organ prolapse: Strategies for the improvement of surgical outcomes[J]. Investig Clin Urol, 2019, 60(6): 413-424.
|
[4] |
Bringman S, Conze J, Cuccurullo D, et al. Hernia repair: the search for ideal meshes[J]. Hernia, 2010, 14(1): 81-87.
|
[5] |
Petros PE, Ulmsten UI. An integral theory of female urinary incontinence. Experimental and clinical considerations[J]. Acta Obstet Gynecol Scand Suppl, 1990, 153: 7-31.
|
[6] |
DeLancey JO. Structural support of the urethra as it relates to stress urinary incontinence: the hammock hypothesis[J]. Am J Obstet Gynecol, 1994, 170(6): 1713-1720; discussion 1720-1723.
|
[7] |
Glazener CM, Breeman S, Elders A, et al. Mesh, graft, or standard repair for women having primary transvaginal anterior or posterior compartment prolapse surgery: two parallel-group, multicentre, randomised, controlled trials(PROSPECT)[J]. Lancet(London, England), 2017, 389(10067): 381-392.
|
[8] |
Meyer W. IX. The implantation of silver filigree for the closure of large hernia apertures[J]. Ann Surg, 1902, 36(5): 767-778.
|
[9] |
Flynn WJ, Brant AE, Nelson GG. A four and one-half year analysis of tantalum gauze used in the repair of ventral hernia[J]. Ann Surg, 1951, 134(6): 1027-1034.
|
[10] |
Wolstenholme JT. Use of commercial dacron fabric in the repair of inguinal hernias and abdominal wall defects[J]. AMA Arch Surg, 1956, 73(6): 1004-1008.
|
[11] |
Usher FC. A new plastic prosthesis for repairing tissue defects of the chest and abdominal wall[J]. Am J Surg, 1959, 97(5): 629-633.
|
[12] |
Usher FC, Allen JE, Jr, et al. Polypropylene monofilament. A new, biologically inert suture for closing contaminated wounds[J]. JAMA, 1962, 179: 780-782.
|
[13] |
Smietański M, Bury K, Smietańska IA, et al. Five-year results of a randomised controlled multi-centre study comparing heavy-weight knitted versus low-weight, non-woven polypropylene implants in Lichtenstein hernioplasty[J]. Hernia, 2011, 15(5): 495-501.
|
[14] |
DeBord JR. The historical development of prosthetics in hernia surgery[J]. Surg Clin North Am, 1998, 78(6): 973-1006.
|
[15] |
Ulmsten U, Henriksson L, Johnson P, et al. An ambulatory surgical procedure under local anesthesia for treatment of female urinary incontinence[J]. Int Urogynecol J Pelvic Floor Dysfunct, 1996, 7(2): 81-85; discussion 85-86.
|
[16] |
Wang C, Christie AL, Zimmern PE. Long-term occurrence of secondary compartment pelvic organ prolapse after open mesh sacrocolpopexy for symptomatic prolapse[J]. Neurourol Urodyn, 2018, 37(3): 1101-1105.
|
[17] |
Cundiff GW, Varner E, Visco AG, et al. Risk factors for mesh/suture erosion following sacral colpopexy[J]. Am J Obstet Gynecol, 2008, 199(6): 688. e1-5.
|
[18] |
Nygaard I, Brubaker L, Zyczynski HM, et al. Long-term outcomes following abdominal sacrocolpopexy for pelvic organ prolapse[J]. JAMA, 2013, 309(19): 2016-2024.
|
[19] |
Maher C, Feiner B, Baessler K, et al. Transvaginal mesh or grafts compared with native tissue repair for vaginal prolapse[J]. Cochrane Database Syst Rev, 2016, 2(2): Cd012079.
|
[20] |
Milani AL, Damoiseaux A, IntHout J, et al. Long-term outcome of vaginal mesh or native tissue in recurrent prolapse: a randomized controlled trial[J]. Int Urogynecol J, 2018, 29(6): 847-858.
|
[21] |
Berger RL, Li LT, Hicks SC, et al. Development and validation of a risk-stratification score for surgical site occurrence and surgical site infection after open ventral hernia repair[J]. J Am Coll Surg, 2013, 217(6): 974-982.
|
[22] |
Semmens JP, Wagner G. Estrogen deprivation and vaginal function in postmenopausal women[J]. JAMA, 1982, 248(4): 445-448.
|
[23] |
Roman S, Mangir N, Hympanova L, et al. Use of a simple in vitro fatigue test to assess materials used in the surgical treatment of stress urinary incontinence and pelvic organ prolapse[J]. Neurourol Urodyn, 2019, 38(1): 107-15.
|
[24] |
Klinge U, Klosterhalfen B, Birkenhauer V, et al. Impact of polymer pore size on the interface scar formation in a rat model[J]. J Surg Res, 2002, 103(2): 208-214.
|
[25] |
Brown BN, Mani D, Nolfi AL, et al. Characterization of the host inflammatory response following implantation of prolapse mesh in rhesus macaque[J]. Am J Obstet Gynecol, 2015, 213(5): 668. e1-10.
|
[26] |
Knight KM, Moalli PA, Abramowitch SD. Preventing mesh pore collapse by designing mesh pores with auxetic geometries: a comprehensive evaluation via computational modeling[J]. J Biomech Eng, 2018, 140(5): 0510051-0510058.
|
[27] |
Iakovlev VV, Guelcher SA, Bendavid R. Degradation of polypropylene in vivo: a microscopic analysis of meshes explanted from patients[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(2): 237-248.
|
[28] |
Robichaud A, Bélanger M, Poirier M, et al. Avoidance of the vaginal incision site for mesh placement in vaginal wall prolapse surgery: a prospective study[J]. Eur J Obstet Gynecol Reprod Biol, 2017, 217: 131-136.
|
[29] |
Leanza V, Zanghì G, Vecchio R, et al. How to prevent mesh erosion in transobturator Tension-Free Incontinence Cystocoele Treatment (TICT): a comparative survey[J]. G Chir, 2015; 36(1): 21-25.
|
[30] |
Orenstein SB, Saberski ER, Kreutzer DL, et al. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice[J]. J Surg Res, 2012, 176(2): 423-429.
|
[31] |
Feola A, Pal S, Moalli P, et al. Varying degrees of nonlinear mechanical behavior arising from geometric differences of urogynecological meshes[J]. J Biomech, 2014, 47(11): 2584-2589.
|
[32] |
Milani AL, Heidema WM, van der Vloedt WS, et al. Vaginal prolapse repair surgery augmented by ultra lightweight titanium coated polypropylene mesh[J]. Eur J Obstet Gynecol Reprod Biol, 2008, 138(2): 232-238.
|
[33] |
Hung MJ, Wen MC, Huang YT, et al. Fascia tissue engineering with human adipose-derived stem cells in a murine model: implications for pelvic floor reconstruction[J]. J Formos Med Assoc, 2014, 113(10): 704-715.
|
[34] |
Roman S, Mangir N, Bissoli J, et al. Biodegradable scaffolds designed to mimic fascia-like properties for the treatment of pelvic organ prolapse and stress urinary incontinence[J]. J Biomater Appl, 2016, 30(10): 1578-1588.
|
[35] |
Hympánová L, Rynkevic R, Román S, et al. Assessment of electrospun and ultra-lightweight polypropylene meshes in the sheep model for vaginal surgery[J]. Eur Urol Focus, 2020, 6(1): 190-198.
|